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Abstract: L-asparaginases are used in the treatment of acute lymphoblastic leukemia. The aim
of this work was to compare the antiproliferative potential and proapoptotic properties of novel
L-asparaginases from different structural classes, viz. EcAIII and KpAIII (class 2), as well as ReAIV
and ReAV (class 3). The EcAII (class 1) enzyme served as a reference. The proapoptotic and
antiproliferative effects were tested using four human leukemia cell models: MOLT-4, RAJI, THP-1,
and HL-60. The antiproliferative assay with the MOLT-4 cell line indicated the inhibitory properties of
all tested L-asparaginases. The results from the THP-1 cell models showed a similar antiproliferative
effect in the presence of EcAII, EcAIII, and KpAIII. In the case of HL-60 cells, the inhibition of
proliferation was observed in the presence of EcAII and KpAIII, whereas the proliferation of RAJI
cells was inhibited only by EcAII. The results of the proapoptotic assays showed individual effects of
the enzymes toward specific cell lines, suggesting a selective (time-dependent and dose-dependent)
action of the tested L-asparaginases. We have, thus, demonstrated that novel L-asparaginases, with a
lower substrate affinity than EcAII, also exhibit significant antileukemic properties in vitro, which
makes them interesting new drug candidates for the treatment of hematological malignancies. For all
enzymes, the kinetic parameters (Km and kcat) and thermal stability (Tm) were determined. Structural
and catalytic properties of L-asparaginases from different classes are also summarized.

Keywords: L-asparaginase; substrate affinity; leukemia; cell proliferation; cell apoptosis

1. Introduction

L-Asparaginases are enzymes that hydrolyze L-asparagine (L-Asn) to L-aspartic acid
(L-Asp) and ammonia. The history of using L-asparaginases in leukemia therapy has its
beginning in 1953, when Kidd reported the anticancer activity of guinea pig (Cavia porcellus)
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serum fractions containing L-asparaginase [1,2]. The guinea pig protein has never been
approved for clinical use, instead, periplasmic L-asparaginase from Escherichia coli (EcAII)
has been used clinically for the treatment of acute lymphoblastic leukemia (ALL) since
1978 [3]. The EcAII acts by depleting the circulating pool of L-Asn, an amino acid essential
for the survival of some leukemic cells that lack the ability to synthesize L-Asn. Its targeted
action spares the normal cells, which are able to synthesize L-Asn [4]. Recent reports
indicate that L-asparaginases can be used not only in leukemia therapy but also in the
treatment of other types of cancers [4–7].

From the structural point of view, L-asparaginases can be divided into three structural
classes [8,9] (Figure 1). Class 1 includes tetrameric enzymes [10] initially identified in
bacteria, although their homologs are present in yeast [11] and mammals [12,13]. Class 1
contains constitutive proteins (cytoplasmic, type I) with low (mM) substrate affinity and
periplasmic (secreted type II) enzymes with higher (µM) affinity for L-Asn [14]. Class 2
contains type III enzymes which can be divided into K-dependent and K-independent
proteins [15]. Type III L-asparaginases belong to the Ntn-hydrolase family [16] and are
produced as inactive precursors that develop catalytic activity during auto-maturation [17].
Mature class 2 L-asparaginases are (αβ)2 heterodimers (Figure 1) with (mM) substrate
(L-Asn) affinity. Class 2 enzymes were discovered in all domains of life [18]. Class 3
contains constitutive (thermostable, type IV) and inducible (thermolabile, type V) enzymes
originally identified in the Rhizobium etli. Type IV and type V enzymes are homodimers
(Figure 1) with (mM) substrate affinity [19].
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Figure 1. Catalytic properties and structures of L-asparaginases. Reaction catalyzed by enzymes
with (A) L-asparaginase activity, (B) L-glutaminase (co-)activity, and (C) β-aspartyl aminopeptidase
(co-)activity (NH2-R—amino acid residue). (D) Symbols of different activities presented in panels
(A–C). (E) Structure of EcAII from E. coli (PDB: 6v23). (F) Structure of EcAIII (PDB: 2zal) from E. coli.
(G) AlphaFold2 model of KpAIII (K. pneumoniae) precursor (linker marked in red). (H) Structure of
thermostable ReAIV (PDB: 8osw) and (I) thermolabile enzyme ReAV (PDB: 7os5) from R. etli. In all
panels, protein subunits are shown in different colors. Red circles mark active sites with L-Asp in
space-filling representation (panels (E,F)). Violet spheres (panels (H,I)) mark Zn2+ coordinated in the
active sites of ReAIV and ReAV.
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On the one hand, currently only type II (class 1) enzymes from E. coli (EcAII) and
E. chrysanthemi (current taxonomic classification: Dickeya dadantii) (ErAII) are approved
as drugs in ALL therapy [20]. On the other hand, the potential therapeutic use of other
L-asparaginases (from class 2 or class 3) is often neglected as those enzymes were rejected
several years ago due to their too-low substrate affinity [21], while in fact their antileukemic
properties have never been tested. The aim of this work was to screen the antileukemic
potential of recombinant L-asparaginases from different sources and structural classes:
EcAIII and KpAIII (class 2 enzymes from E. coli and K. pneumoniae, respectively; Figure S1),
and ReAIV and ReAV (class 3 proteins from R. etli). EcAII (class 1 E. coli enzyme) served
as a reference in our studies. In parallel with the expression of wild-type enzymes, we
produced an inactive EcAIII mutant used as a control protein (Control-P) in proliferative
and apoptotic assays. The tested bacterial enzymes differ not only in their affinity for L-Asn
but also in their molecular size and enzymatic properties (Figure 1). Investigations were
performed with four human leukemia cell lines: acute lymphoblastic leukemia (MOLT-4),
Burkitt’s lymphoma (RAJI), acute monocytic leukemia (THP-1), and acute promyelocytic
leukemia (HL-60). We have observed that tested enzymes (EcAIII, KpAIII, and ReAIV), pos-
sessing lower substrate affinity (mM) than EcAII (µM), also exhibit significant antileukemic
properties in vitro, which makes them interesting drug candidates for the treatment of
hematological malignancies.

2. Results
2.1. Biochemical Properties of Tested L-Asparaginases

All studied L-asparaginases were expressed in the E. coli BL21 Gold (DE3) strain.
This host was appropriate for the efficient production of EcAIII and KpAIII (yields up to
60 mg per 1 L of bacterial culture). The same was observed for the Control-P protein.
An expression of up to 50 mg/L was also possible for the ReAV, while the production of
ReAIV was less efficient (up to 10 mg/L). The most problematic was the expression of
EcAII in this system, as we were able to obtain up to 2 mg of the protein from 1L of bacterial
culture. Therefore, for the EcAII expression, BL21 (DE3) strain ∆ansA/∆ansB [22,23] was
used, increasing the expression level to 10 mg/L.

A visual inspection of the protein samples after purification and dialysis to PBS (see
Materials and Methods) showed that all proteins, with the exception of EcAII (which
precipitated), survived in soluble form and were enzymatically active. To stabilize EcAII
in the PBS buffer, we tested several non-toxic additives: sucrose, sorbitol, glycine, choline,
and L-arginine. Among them, the most efficient was glycine, as the addition of 100 mM
glycine prevented EcAII precipitation. The nanoDSF (differential scanning fluorimetry
in nanoscale) experiment showed that the addition of 100 mM of glycine increases the
thermal stability (Tm) of EcAII (Table S1). We also noticed that the KpAIII protein could not
be deep frozen at −80 ◦C in PBS, as it immediately precipitated after thawing. However,
the addition of 100 mM of glycine acted as a cryoprotectant, allowing the safe storage of
KpAIII. We determined the Tm of all the enzymes in PBS. The most thermostable was ReAIV
(83.24 ◦C), while its counterpart ReAV had the lowest Tm of 48.41 ◦C. We also observed that
additives such as glycine increase Tm by about ~3 ◦C (Table S1).

Using the Nessler method, we determined the kinetic parameters of the L-Asn hy-
drolysis of class 2 and class 3 enzymes in PBS (pH 7.4) at 37 ◦C, finding the highest L-Asn
affinity for ReAIV (7.16 ± 2.03 mM), and the lowest for KpAIII (42.95 ± 7.77 mM) (Table 1).
The kinetic parameters of the EcAII hydrolysis of L-Asn were determined using ITC, as
the Nessler method is not sensitive enough for micromolar Km determination [24]. The
parameters determined in PBS at 37 ◦C summarized in Table 1 are different from the values
reported earlier for the kinetic assays at optimal conditions (Table S2).
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Table 1. Kinetic parameters of L-Asn hydrolysis at 37 ◦C in PBS (pH 7.4).

Enzyme Km [mM] kcat [s−1] kcat/Km [mM−1s−1]

EcAII 0.012 ± 0.002 39 ± 1 3301 ± 561
EcAIII 17.66 ± 1.87 5.77 ± 0.19 0.33 ± 0.10
KpAIII 42.95 ± 7.77 10.44 ± 0.96 0.24 ± 0.12
ReAIV 7.16 ± 2.03 9.98 ± 0.61 1.39 ± 0.48
ReAV 24.81 ± 3.22 28.53 ± 1.60 1.15 ± 0.21

The EcAIII and KpAIII proteins also display additional β-aspartyl peptidase activ-
ity. β-Aspartyl peptidase activity was monitored using the GOT (glutamate-oxaloacetate
transaminase) method and N-β-L-aspartyl-L-phenylalanine methyl ester (β-L-Asn-PheMe)
as a substrate. Determined kinetic parameters indicated that KpAIII has a higher affinity
for the tested β-peptide than EcAIII (Table 2).

Table 2. Kinetic parameters for β-L-Asn-PheMe hydrolysis at 37 ◦C in PBS (pH 7.4).

Enzyme Km [mM] kcat [s−1] kcat/Km [mM−1s−1]

EcAIII 3.57 ± 0.58 0.112 ± 0.007 0.031 ± 0.007
KpAIII 2.44 ± 0.47 0.017 ± 0.003 0.007 ± 0.003

We also monitored the change in the specific activity of tested L-asparaginases after
incubation in PBS at 37 ◦C for 24 and 48 h. Our data revealed that at the beginning of the ex-
periment, the highest specific activity was observed for EcAII; however, it dropped by ~61%
after 24 h of incubation (Figure S2). We also observed that the specific activity of ReAIV
gradually decreased in time. Interestingly, the specific activity of class 2 L-asparaginases,
EcAIII and KpAIII, increased gradually after each day of incubation (Figure S2).

2.2. Preparation of Enzymes for Cell Line Studies

Each purification batch of L-asparaginases (concentrated to 10–15 mg/mL) was tested
for endotoxin level (LPS, lipopolysaccharide) using the LAL (limulus amebocyte lysate)
method. The LPS content per mg of purified protein was in the range of 0.20–0.23 EU/Ml
(0.02–0.05 EU/mg) for EcAII; 0.44–0.59 EU/mL (0.02–0.40 EU/mg) for EcAIII; and 0.18–0.40
EU/mL (0.01–0.04 EU/mg) for KpAIII. In the ReAV samples, the LPS level was in the
range of 0.79–0.98 EU/mL (0.05–0.10 EU/mg), while for ReAIV it was 0.13–0.16 EU/mL
(0.06–0.07 EU/mg).

Prior to the experiments with human cell lines, we also tested the stability of each
enzyme in the cell culture media and its components. The EcAII, EcAIII, and KpAIII
enzymes tolerated 48 h of incubation in culture media perfectly well. The behavior of the
class 3 enzymes was more problematic. For ReAIV, we observed a slight precipitation in all
tested conditions (24–48 h) at the highest concentration of the enzyme (1.0 mg/mL). This
effect was not observed at lower concentrations (0.001, 0.01, and 0.1 mg/mL). The ReAV
protein precipitated heavily at all concentrations used (0.01, 0.1, and 1.0 mg/mL) and in all
tested conditions (Figure S3A). We used SDS-PAGE to assay the content of the precipitate.
The analysis of the gels revealed that the precipitate contained only ReAV (when incubated
in RPMI-1640 or RPMI-1640 with antibiotics and L-glutamine) or simultaneously ReAV
and BSA when the incubation was performed in the presence of 10% FBS (Figure S3B). To
test the ReAV stability in the cell culture, we performed its incubation with RAJI cells for 24
and 48h. Unfortunately, also in this case, ReAV precipitation was observed (Figure S3C,D).
This unusual behavior at 37 ◦C disqualified ReAV from further experiments with leukemia
cell lines.

2.3. Antiproliferative Effect of L-Asparaginases

In the present study, we analyzed the antiproliferative effect of selected L-asparaginases
on four common leukemia cell lines, HL-60, THP-1, RAJI, and MOLT-4. The experiments
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with MOLT-4 cells showed that all tested L-asparaginases (EcAII, EcAIII, KpAIII, and
ReAIV) can inhibit cell proliferation after 48 h stimulation, but after 24 h, this effect was
only detected for EcAII (all concentrations tested), KpAIII (0.01 mg/mL and 0.1 mg/mL),
and ReAIV (only 0.1 mg/mL) (Figure 2A).

Molecules 2024, 29, x FOR PEER REVIEW 5 of 16 
 

 

2.3. Antiproliferative Effect of L-Asparaginases 

In the present study, we analyzed the antiproliferative effect of selected L-asparagi-

nases on four common leukemia cell lines, HL-60, THP-1, RAJI, and MOLT-4. The exper-

iments with MOLT-4 cells showed that all tested L-asparaginases (EcAII, EcAIII, KpAIII, 

and ReAIV) can inhibit cell proliferation after 48 h stimulation, but after 24 h, this effect 

was only detected for EcAII (all concentrations tested), KpAIII (0.01 mg/mL and 0.1 

mg/mL), and ReAIV (only 0.1 mg/mL) (Figure 2A). 

 

Figure 2. The effect of the tested enzymes on leukemic cell proliferation. Cells from the (A) MOLT-4, 

(B) RAJI, (C) THP-1, and (D) HL-60 lines were stained with PKH67 dye according to the manufac-

turer’s instructions. The maximum fluorescence was measured on day 0, and cells were then stimu-

lated with the tested L-asparaginases for 24 and 48 h and analyzed using a flow cytometer (unstim-

ulated cells and cells stimulated with the Control-P protein were used as controls). The presented 

results are from three independent experiments and are expressed as percentages of the mean (col-

ored stripes) ± standard deviation (thin bar) of the maximum fluorescence value at day 0. * Marks a 

p < 0.05 probability according to Tukey’s post hoc test. 

Figure 2. The effect of the tested enzymes on leukemic cell proliferation. Cells from the (A) MOLT-4,
(B) RAJI, (C) THP-1, and (D) HL-60 lines were stained with PKH67 dye according to the manu-
facturer’s instructions. The maximum fluorescence was measured on day 0, and cells were then
stimulated with the tested L-asparaginases for 24 and 48 h and analyzed using a flow cytometer
(unstimulated cells and cells stimulated with the Control-P protein were used as controls). The
presented results are from three independent experiments and are expressed as percentages of the
mean (colored stripes) ± standard deviation (thin bar) of the maximum fluorescence value at day 0.
* Marks a p < 0.05 probability according to Tukey’s post hoc test.
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For the RAJI cells, the inhibition of proliferation was only observed for EcAII
(0.1 mg/mL at 24 h incubation; 0.01 mg/mL and 0.1 mg/mL at 48 h) (Figure 2B). Analyses
of the proliferation of THP-1 cells treated with the tested proteins showed that EcAII can
inhibit cell proliferation after 24 h of incubation (0.1 mg/mL and 1 mg/mL; Figure 2C, left
panel), and after 48 h, a similar effect was observed for all tested proteins except ReAIV
(Figure 2C, right panel). In the case of the HL-60 cells, no effect on cell proliferation was
observed after 24 h of incubation (Figure 2D, left panel), whereas a significant effect was
observed after 48 h of incubation with the EcAII protein (all concentrations tested).

2.4. Proapoptotic Effect of L-Asparaginases

Based on the above proliferation experiments, we selected proteins (and their con-
centrations) to assess their effect on the apoptotic process of leukemic cells. As shown
in Figure 3A, in the case of the MOLT-4 cell line, all tested L-asparaginases showed a
proapoptotic effect (Figure 3).
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Figure 3. Influence of different L-asparaginases on the apoptosis of leukemia cell lines: (A) MOLT-4,
(B) RAJI, (C) THP-1, and (D) HL-60 cells were cultured in the presence of selected enzymes in a
full growth medium for 48 h, stained with a PE Annexin V Apoptosis Detection Kit I, and analyzed
via flow cytometry. The L-asparaginases and their concentrations used in this experiment were
based on the results from proliferation evaluation. The presented results are from three independent
experiments and are expressed in Figure 2, i.e., as a percentage of the mean ± standard deviation
of the dead cells (apoptotic and/or necrotic), *** marks a p < 0.005, and **** marks a p < 0.0001
probability according to Tukey’s post hoc test; ns: not significant. Gating strategies used in flow
cytometry are in Figure S4.

Percentage of apoptotic cells: EcAII (0.01 mg/mL) 86 ± 4%; EcAIII (0.1 mg/mL)
58.2 ± 4.1%; KpAIII (0.1 mg/mL) 61.5 ± 2.8%; ReAIV (0.01 mg/mL) 52 ± 3% vs. stim-
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ulated/negative control cells (Control-P protein 0.1 mg/mL) of 10.7 ± 2.6/9.9 ± 1.7%
(Figure 3A). For the RAJI and THP-1 cells, the induction of apoptosis was confirmed only
for the positive control protein EcAII (0.01 mg/mL); for the RAJI cells, the percentage of
apoptotic cells was 36.7 ± 19% vs. 5.4 ± 0.7% for control cells and 4.9 ± 0.66% for the
negative Control-P protein. For the THP-1 cells, the percentage of apoptotic cells was
36 ± 9% vs. 5.0 ± 0.9% for control cells and 6.5 ± 0.9% for the negative Control-P
(Figure 3B,C). In the case of the HL-60 cells, a weak but significant effect was also ob-
served for KpAIII at 0.1 mg/mL (7.5 ± 2.9% of apoptotic cells) and EcAII at 0.01 mg/mL
(15.8 ± 4.5%), vs. control cells (2.4 ± 0.5%) and the negative Control-P protein (3.2 ± 0.9%)
(Figure 3D).

3. Discussion

In this report, we have analyzed the antileukemic properties of novel L-asparaginases:
EcAIII, KpAIII, and ReAIV. According to the literature data, the most important factor
responsible for the therapeutic efficacy of L-asparaginases in ALL treatment is the sub-
strate (L-Asn) affinity, which should be in the µM range. This range corresponds to the
physiological level of L-Asn circulating in human blood, which varies between 40 and
80 µM [25]. One of the first reports indicating the Km value that determines the in vivo
activity of L-asparaginases was the analysis of the anticancer properties of Pseudomonas
geniculate L-asparaginases [26]. Differences in the antitumor activity of two enzymes, A
and AG, were related to their Km values for L-Asn: 1 mM for enzyme-A and 15 µM for
enzyme-AG. Only enzyme-AG (with L-glutaminase co-activity) showed antitumor activity
in mice. Another factor favoring the antineoplastic activity of enzyme-AG was the relatively
slow clearance from the plasma of tumor-bearing animals [26].

The L-asparaginases used in our studies differ not only in their 3D structure but
also in their L-Asn affinity. In our experiments, we observed proliferation inhibition
or cell death induction even in the presence of L-asparaginases, such as KpAIII, with
Km values significantly lower than for EcAII, which is currently used as a therapeutic
enzyme [22,27,28]. Although PBS is not the optimal environment for activity studies for
most of our enzymes (Table S2), our data indicated that all proteins are still active enough
at physiological conditions to affect the survival of the leukemia cells. Our results indicate
unambiguously that substrate (L-Asn) affinity alone, however important, should not be
a discriminatory factor for testing new L-asparaginases being potential drug candidates.
Another factor that should be considered is the stability of the enzyme, as proteins like
ReAV with low Tm are not suitable for in vitro and further in vivo tests. Interestingly, the
lack of antileukemic activity of the cytosolic E. coli L-asparaginase EcAI (class 1, type I) was
not attributed to its low L-Asn affinity (Km 3.5 mM) [29] but rather to the rapid clearance of
the protein from the serum (very short half-life) or to the inactivation of the enzyme under
physiological conditions since no activity was detectable in the serum after injection [30].
Therefore, enzymes should also retain their specific activity long enough to efficiently
deplete the serum pool of L-Asn. Among the proteins used in this study, the most active
enzyme, EcAII, lost its activity very quickly (24h). The same was observed for ReAIV;
however, this protein needs exogenous Zn2+ to maintain its activity [31]. Interestingly, the
specific activity of EcAIII and KpAIII increased during 48h of incubation. We can link
this phenomenon to the time-dependent degradation of the linker which remains after
maturation and covers the access to the active site preventing substrate binding [16]. The
L-asparaginase activity might be also affected by additives present in protein preparation or
by the components of cell culture media. In our studies, we used glycine as an additive to
EcAII and KpAIII, as among the tested chemicals (see Section 2.1), only glycine effectively
prevented EcAII precipitation. However, the 100 mM of glycine was diluted 10 to 100 times
in the cell culture assays, which contain numerous other ingredients, e.g., all amino acids,
vitamins, sugars, salts, and proteins. Therefore, the presence of extra glycine additive has a
rather minor inhibitory effect in comparison with the impact of all the chemical components
in the cell culture medium. Our studies also revealed that glycine itself did not affect the
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survival of the leukemia cells. Recombinant enzymes should also have acceptable LPS
levels. All proteins produced in our experiments had LPS content in the range similar to
that reported for pharmaceutical preparations of L-asparaginases [32,33].

Acute lymphoblastic leukemia cells are sensitive to L-asparaginase treatment because
of their poor ability to synthesize sufficient amounts of endogenous L-Asn due to low
expression levels of L-asparagine synthetase (ASNS) [34]. The results of our experiments
with the MOLT-4 cell line are in line with previous observations confirming the efficacy
of EcAII (e.g., Spectrila) in inhibiting proliferation or inducing apoptosis in vitro and
in vivo [22,35,36]. Moreover, our data showed that other L-asparaginases such as EcAIII,
KpAIII, and ReAIV are very promising agents in the field of anti-ALL therapy, as they
induce apoptosis in MOLT-4 cells with only slightly lower rates than EcAII, and their
proapoptotic potential is proportional to their Km values. Although EcAIII, KpAIII, and
ReAIV have lower substrate affinity than EcAII, their proapoptotic and antiproliferative
action also seems to be related to the depletion of L-Asn in cell culture media, although this
biological activity might require longer time or higher doses of the enzymes than in the
case of EcAII. Additional L-glutaminase or β-aspartyl peptidase co-activities might also
contribute to the biological effects, although these data need further verification, especially
in the cases of EcAIII or KpAIII. Among the studied enzymes, ReAIV seems to be the most
promising candidate for potential therapeutic use. The tested Ntn-hydrolases, EcAIII and
KpAIII, needed a ~10-fold higher concentration than ReAIV to induce apoptosis at the
same period of time. We also observed that some proteins, e.g., EcAIII, require more time
(48 h) and a higher concentration (0.1 mg/mL) to inhibit the proliferation of MOLT-4 cells
in a mode similar to EcAII.

In experiments with Burkitt’s lymphoma cell line RAJI, some effect on apoptosis and
proliferation was observed only for L-asparaginase with the lowest Km for L-Asn, i.e.,
EcAII. Burkitt’s lymphoma is a non-Hodgkin’s lymphoma. It is a relatively rare cancer but
is highly aggressive, resulting in rapidly growing tumors [37]. There are only a few reports
discussing the use of L-asparaginases in the treatment of Burkitt’s lymphoma [38–42],
presenting contradictory results. According to the most recent studies, it appears that the
use of L-asparaginase as a single agent does not have the desired effect in this cell line.
Although our experiments do not allow us to unequivocally confirm such a hypothesis,
similar observations have already been demonstrated in in vivo studies in mice (engrafted
with RAJI cells), which revealed that EcAII as a single agent showed little antitumor activity,
but in combination with etoposide significantly suppressed tumor burden and improved
survival time compared to the control group [43].

The sensitivity of other types of leukemia cells to L-asparaginases is usually lower than
that of ALL cells. Therefore, we decided to investigate the effect of EcAII, EcAIII, KpAIII,
and ReAIV on the proliferation of THP-1 and HL-60 cell lines. Of the enzymes tested, EcAII
showed the best results in terms of the inhibition of the proliferation and induction of
apoptosis in THP-1 and HL-60 cell lines. The observed weak proapoptotic activity of EcAII
in HL-60 cells is in agreement with the previous finding that promyelocytes are resistant
to L-asparaginase (EcAII) [44]. On the other hand, it was shown that acute myeloid
leukemia (AML) THP-1 cells require L-Gln to survive [45]. This is also in agreement
with our observations, as among the tested enzymes, i.e., EcAII, EcAIII, KpAIII, and
ReAIV, only EcAII exhibits L-glutaminase co-activity with Km for L-Gln in the range
of 3.50–3.95 mM [22,27]. The EcAII counterpart from E. chrysanthemi (ErAII) has a lower
affinity for L-Asn (Km 47–58 µM) and slightly higher for L-Gln (Km 0.36–6.70 mM) [46,47].
It was demonstrated that ErAII, which has higher L-glutaminase co-activity than EcAII,
was more effective in the treatment of patients with AML [48]. L-Gln is essential for protein
biosynthesis and cell cycle progression, and increased levels of L-Gln may enhance L-Asn
biosynthesis via ASNS [49]. On the other hand, the depletion of L-Gln simultaneously with
L-Asn, during ALL therapy with the use of L-asparaginase EcAII (carrying L-glutaminase
co-activity), increases side effects related to hepatotoxicity, pancreatitis, neurotoxicity,
hyperammonemia, hyperglycemia, leukopenia, thrombosis, and bleeding [5,50]. Novel



Molecules 2024, 29, 2272 9 of 16

L-asparaginases tested in this study (EcAIII, KpAIII, and ReAIV) are free of L-glutaminase
co-activity; therefore, their potential application in leukemia therapy will prevent the
occurrence of side effects related to L-Gln depletion. However, EcAIII and KpAIII carry
additional β-aspartyl peptidase co-activity, but at this moment there are no data concerning
how such a co-activity may influence leukemia cells.

According to our knowledge, there are only a few reports on antiproliferative or
proapoptotic effects induced by novel source L-asparaginases in AML (e.g., THP-1) and
promyelocytic (e.g., HL-60) cell lines. It has been reported, for example, that L-asparaginase
from Burkholderia pseudomallei (GenBank: ABA50799.1, class 1, type II), which has no
detectable L-glutaminase activity, affects the viability of THP-1 cells [51]. As THP-1 cells
are more sensitive to the depletion of L-Gln than L-Asn, these data conflict with our
observations. Unfortunately, the Km values for L-Asn and L-Gln were not determined for
the B. pseudomallei enzyme, making it difficult to assess the origin of the cytotoxic activity
against the THP-1 cells. In another study, it was shown that Mycobacterium tuberculosis
L-asparaginase (class 1, type I, Uniprot: P9WPX5) with a Km of 8.36 mM did not induce
any morphological changes or cellular toxicity when incubated with THP-1 cells [52], and
these data are similar to our observations for the enzymes with millimolar Km and no
L-glutaminase co-activity. On the other hand, the L-asparaginase from Pyrococcus furiosus
(Km 1.623 mM, no L-glutaminase activity, Uniprot: Q8U4E6), belonging to class 2 type III
(the same class/type as for EcAIII or KpAIII), was reported to induce apoptosis of THP-1
cells [53]. It was shown that an enzyme isolated from the culture supernatant of Enterobacter
cloacae (Km 1.58 mM) exhibited antiproliferative activity in HL-60 and MOLT-4 cells [54].
The cytotoxicity (IC50) against HL-60 was comparable to that of the commercial EcAII
L-asparaginase, while the same effect against MOLT-4 was lower than that observed for
EcAII. The sequence of the E. cloacae enzyme was not provided in this paper, but SDS-PAGE
analysis showed the molecular weight (Mw) of a monomer to be 52 kDa. These data are
rather confusing, as sequence databases list three L-asparaginases from E. cloacae (encoded
by the genes ansA, ansB, and iaaA), but these proteins have Mw values in the range of
32–36 kDa. An unusual Mw of 63–65 kDa has also been reported for L-asparaginase from
Bacillus licheniformis (Km 1.518 µM), which showed remarkable antiproliferative activity
against HL-60 cells [55]. However, this information is not supported by sequence databases,
as the B. licheniformis genome does not encode an L-asparaginase with such a high Mw.
It was also shown that an enzyme isolated from soybean root nodules (Km for L-Asn
0.36 mM) had higher antiproliferative activity in MOLT-4 and HL-60 cells than EcAII [56]. It
is possible that the extracted protein was a thermolabile class 3 L-asparaginase. In a report
suggesting that Yarrowia lipolytica L-asparaginase inhibited the proliferation and growth of
MOLT-4 and RAJI cells [57], the authors claimed that they investigated type II (secreted)
L-asparaginase (Km not determined), but the sequence [58] indicated that the tested enzyme
was an Ntn-hydrolase. In a report about anticancer properties of the Pyrococcus abyssi
L-asparaginase [59], the authors described the enzyme as “L-asparaginase I”. However, the
provided Km value of 2.05 mM, sequence, and structure model unambiguously indicate
a class 2 Ntn-hydrolase. Therefore, it appears that aside from our studies on the EcAIII,
KpAIII, and ReAIV enzymes, there are also other reports discussing potential antileukemic
properties of class 2 and class 3 L-asparaginases; however, those L-asparaginases were
incorrectly described or classified.

4. Materials and Methods
4.1. Enzyme Expression and Purification

Genes encoding the following L-asparaginases: EcAII (Uniprot: P00805), EcAIII
(Uniprot: P37595), and KpAIII (Uniprot: A6T6S6), were synthesized using GenScript and
cloned to vectors carrying N-terminal 6xHis-tag (pET28a or pMSCG92). The synthetic gene
of ReAIV (GeneArt; Uniprot: Q2KB35) and the gene-encoding ReAV (Uniprot: Q2K0Z2; ob-
tained from German Collection of Microorganisms and Cell Cultures GmbH) were cloned
to the pET151D-TOPO vector as described previously [19,60]. All proteins were expressed
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in E. coli BL21 Gold (DE3), except EcAII, which was produced in another E. coli strain, BL21
(DE3) ∆ansA/∆ansB, designed for the expression of highly active L-asparaginases [22,23].
We also produced an inactive EcAIII mutant carrying the V208A/G209Q/P212S substitu-
tions. This triple mutant was generated via random mutagenesis [61] and was used as a
control protein (Control-P) in proliferative and apoptotic assays.

The expression of EcAIII and KpAIII (and Control-P) was carried out at 37 ◦C in LB
medium. When OD600 reached ~1.00, the cultures were cooled down to 18 ◦C, and protein
expression was induced with 0.5 µM IPTG. The cultures were grown overnight at 18 ◦C.
The expression of ReAIV and ReAV was carried out as described previously [19,60]. After
overnight expression, bacterial cells were centrifuged and re-suspended in 50 mM of Tris-
HCl buffer at a pH of 8.0, containing 500 mM of NaCl, 20 mM (or 50 mM) of imidazole and
(optionally) 10% glycerol. Bacteria were disrupted using sonication, and centrifuge-clarified
lysates were loaded on a Ni-NTA Agarose column (Macherey-Nagel, Düren, Germany).
Unbonded proteins were washed two times with buffer A (50 mM of Tris-HCl at a pH of
8.0, 500 mM of NaCl, and 20 mM or 50 mM of imidazole). The 6xHis-tagged proteins were
eluted from the column with buffer B (50 mM of Tris-HCl at a pH of 8.0, 500 mM of NaCl,
and 400 mM (or 500 mM) of imidazole, 10% glycerol). Protein purity and homogeneity
were checked with SDS-PAGE (Figure S5).

4.2. Preparation of Proteins for Human Cell Line Studies

The following enzymes: EcAII, EcAIII, ReAIV, ReAV, and Control-P, were concentrated
to 10–15 mg/mL at 4 ◦C using Amicon centrifugal filters (MWCO 10 kDa, Merck KGaA, DE).
KpAIII and ReAIV were concentrated using a dialysis tube and PEG20000 as described
elsewhere [62]. After concentration, enzymes (in 1–3 mL volume) were transferred to
mini dialysis devices (Slide-A-Lyzer, MWCO 10 kDa, Thermo Fisher Scientific, USA) and
dialyzed overnight at 4 ◦C to sterile PBS (phosphate-buffered saline) buffer (Adlab, Poland)
with three exchanges of the buffer volume. After dialysis, proteins were collected, filtered
via a sterile 0.22 µm syringe filter, placed in sterile Eppendorf tubes, and immediately
frozen at −80 ◦C.

For EcAII, which precipitated during overnight dialysis to PBS, different stabilizing
additives, such as sucrose, sorbitol, glycine, choline, and L-arginine [63–65], were tested
at a 100 mM concentration. The additive stocks of 1000 mM were prepared in sterile PBS
and filtered with a 0.22 µm syringe filter. The same additives were tested as freezing
stabilizers for KpAIII, which could not be frozen for long-term storage at −80 ◦C in PBS, as
it precipitates after thawing. All proteins obtained from different purification batches were
tested for lipopolysaccharide (LPS) content [66,67]. The LPS level was determined using
a Pierce Chromogenic Endotoxin Quantification Kit (Thermo Fisher Scientific, Waltham,
MA, USA).

4.3. Determination of Enzyme Kinetic Parameters and Thermal Stability

The kinetic parameters of EcAIII, KpAIII, ReAIV, and ReAV at 37 ◦C in PBS (Figure S6)
as well as the change in L-asparaginase-specific activity after 24 and 48 h of incubation at
37 ◦C were determined using the Nessler method as described previously [68] at a protein
concentration of 0.5–1.5 µM. The kinetic parameters of L-Asn hydrolysis with EcAII were
determined using the ITC single-injection method (ITC-SIM) and PEAQ-ITC calorimeter
(MALVERN); a 5 µL aliquot of 50 mM L-Asn dissolved in PBS buffer was injected into
the reaction cell (of 200 µL volume), containing 50 nM of EcAII enzyme in PBS with an
injection time of 8 s and at stirring speed of 750 rpm and at 37 ◦C. Differential power (DP)
was set to 10 µcal s−1.

For EcAIII and KpAIII, β-aspartyl peptidase activity was determined using a con-
tinuous enzyme-coupled assay and substrate (N-β-L-aspartyl-L-phenylalanine methyl
ester) at the concentration range 0.69–18 mM and protein concentration of 5–7 µM. Reac-
tions were performed in PBS, containing 600 µM α-ketoglutarate, 190 µM NADH, 5 U of
GOT (glutamate-oxaloacetate transaminase), and 3.5 U of MD (malate dehydrogenase).
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The NADH to NAD+ conversion was measured as a decrease in absorbance at 340 nm
(Figure S7). Kinetic calculations were performed using the Enzyme Kinetics App included
in OriginPro software v. 9.7.0.188 (OriginLab, Northampton, MA, USA).

The thermal stability of the enzymes was monitored via nanoDSF using a Prometheus
Panta (NanoTemper Technologies, Munich, Germany) instrument. Melting scans were
recorded by monitoring fluorescence emission at 330/350 nm for samples subjected to
a 25–95 ◦C temperature ramp at 1 ◦C/min. As the enzymes used in our studies have
variable thermal stability, they were tested for stability in the cell culture medium and its
components prior to application to the human cell line cultures. Tests were carried out in
sterile 96-well plates using different concentrations (0.01, 0.1 or 1.0 mg/mL) of enzymes
added to the four tested solutions (100 µL) containing: (1) RPMI-1640 (PAN Biotech,
Aidenbach, Germany); (2) RPMI-1640 with 10% FBS (PAN Biotech, Aidenbach, Germany);
(3) RPMI-1640 with antibiotics (Antibiotic Antimycotic Solution, Merck, Darmstadt, DE)
and L-glutamine (Merck, Darmstadt, DE); and (4) RPMI-1640 with antibiotics, L-glutamine
and 10% FBS. The plate was incubated at 37 ◦C and inspected visually every 24 h for the
occurrence of any precipitation.

4.4. Cell Proliferation

The proliferation assay for the leukemic cells was performed using the PKH67 dye and
flow cytometry. Briefly, on the day of the experiment, cells from the tested lines (MOLT-4,
RAJI, THP-1, and HL-60; all from ATCC, Manassas, VA, USA) were stained with PKH67
dye according to the manufacturer’s instructions (Sigma-Aldrich, Saint Louis, MO, USA).
Next, a small number of cells (~10,000) were used to measure the maximum fluorescence
(on day 0) and the rest of the cells were seeded on 24-well plates at a density of 20,000/well
(final volume 250 µL) and cultured for 24–48 h in complete growth medium RPMI-1640
supplemented with 10% FBS and L-glutamine and antibiotics (PAN Biotech, Aidenbach,
Germany and Sigma-Aldrich, Saint Louis, MO, USA) in the presence of the tested proteins
at different concentrations (0.001–0.1 mg/mL for MOLT-4 and RAJI and 0.01–1 mg/mL
for HL-60 and THP-1 lines). The concentrations of enzymes used with a particular cell
line were optimized in preliminary experiments. After 24 and 48 h, the mean fluorescence
intensity of cells was analyzed with flow cytometry (FACSCanto II BD Bioscience, San Jose,
CA, USA). The results are presented as the mean values ± standard deviation (SD) of the
percentage of the mean fluorescence intensity of cells from day 0 and were obtained from
at least three independent experiments.

4.5. Cell Apoptosis

Based on the proliferation experiments, we selected proteins (and their concentrations)
to assess their effect on apoptosis induction in leukemic cells. As in the assessment of
proliferation, the apoptotic effect of the tested proteins on the HL-60, THP-1, RAJI, and
MOLT-4 cell lines was assessed using flow cytometry. On the day of the experiment, cells
were seeded at a density of 20,000/well in a 24-well plate and cultured in a complete
growth medium in the presence of the tested proteins (proteins and their concentrations
were selected based on the results of the proliferation experiment). The culture was
maintained for 48 h. After this time, cells were centrifuged (500 × g/5 min), stained
according to the manufacturer’s protocol using the PE Annexin V Apoptosis Detection
Kit I (BD Pharmingen, San Diego, CA, USA), and analyzed using a FACSCanto II flow
cytometer (BD Bioscience, San Diego, CA, USA). Cells negative for annexin V and 7-AAD
were considered viable. Cells expressing annexin V or both annexin V and 7-AAD were
classified as apoptotic.

The results are presented as the means value ± standard deviations of the percentage
of apoptotic/necrotic cells and were obtained from at least three independent experiments
(with two replicates for each condition); for gating strategies, see Supplementary Figure S4.
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4.6. Statistical Analyses

The statistical analysis was performed using GraphPad Prism 9.0 software (GraphPad
Software Inc., San Diego, CA, USA). All comparisons were performed using a one-way
analysis of variance (ANOVA) with Tukey’s post hoc test. Descriptive statistics were
presented as the means ± SD. Correlations between analyzed factors were calculated using
Spearman’s rank method. Type I statistical error p < 0.05 was considered significant.

5. Conclusions

In the present study, we analyzed the antiproliferative and proapoptotic effects of new
L-asparaginases on four leukemia cell lines, HL-60, THP-1, RAJI, and MOLT-4. The results
indicate that the enzymes EcAIII, KpAIII, and ReAIV have unquestionable, albeit different
(time-dependent and dose-dependent), potential in the inhibition of the proliferation or
induction of the apoptosis of leukemia cells. Although the outcomes of our investigations
are promising, some of the shortcomings of this study should also be highlighted.

Firstly, the results were obtained using commercially available cell lines that are
“artificial systems” and might carry some genetic abnormalities. The biological effects of
EcAIII, KpAIII, and ReAIV should also be investigated using cells isolated from leukemia
patients. The actions of any enzyme should also be tested in vivo to verify its stability,
immunogenicity, and antineoplastic properties. Currently, reports from studies in animal
models are available only for the commercial enzymes EcAII or ErAII [69–71], and there
are no data for Nth-hydrolases (class 2) or Rhizobium etli-type (class 3) proteins.

Secondly, we were focused on evaluating the antiproliferative and proapoptotic prop-
erties of EcAIII, KpAIII, and ReAIV, related to the primary activity of these enzymes, i.e.,
the hydrolysis of L-Asn. However, our studies suggested that enzymes with a secondary
activity, e.g., L-glutaminase co-activity, might act more efficiently in selected leukemia
subtypes. Class 2 L-asparaginases, e.g., EcAIII, are free of L-glutaminase co-activity but
demonstrate β-aspartyl aminopeptidase co-activity [72]. With no studies on the effect of the
removal of the toxic β-aspartyl dipeptides on the survival of leukemia cells, it is difficult to
predict how such co-activity will affect cancer (or healthy) cells. So far, there are no data
about any secondary activity of class 3 L-asparaginase ReAIV. However, considering their
unusual catalytic center with a Zn2+ [60], we cannot exclude that ReAIV could also catalyze
other biochemical reactions.

As the long-term goals of our studies are devoted to developing new therapeu-
tic enzymes, optimizing treatment protocols, and expanding clinical applications of L-
asparaginases, there is no doubt that comprehensive knowledge about the mode of action
through which enzymes from classes 2 and 3 modulate the leukemia cell behavior will be
of high importance for designing innovative cancer therapies. It can also be concluded that
the inconsistencies of the available experimental data about the possibility of the use of
L-asparaginase in the treatment of non-ALL leukemias need to be verified and systematized
to define clear recommendations.
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tested enzymes after 24 and 48 h incubation in PBS at 37 ◦C; Figure S3: Stability of enzymes in the
cell culture media and its components; Figure S4: Gating strategy used in flow cytometry analysis of
leukemia cell apoptosis; Figure S5: SDS-PAGE gels from protein purification; Figure S6: Fitting of
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