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Abstract: The drug discovery and development process requires a lot of time, financial, and workforce
resources. Any reduction in these burdens might benefit all stakeholders in the healthcare domain,
including patients, government, and companies. One of the critical stages in drug discovery is a
selection of molecular structures with a strong affinity to a particular molecular target. The possible
solution is the development of predictive models and their application in the screening process,
but due to the complexity of the problem, simple and statistical models might not be sufficient for
practical application. The manuscript presents the best-in-class predictive model for the serotonin
1A receptor affinity and its validation according to the Organization for Economic Co-operation and
Development guidelines for regulatory purposes. The model was developed based on a database
with close to 9500 molecules by using an automatic machine learning tool (AutoML). The model
selection was conducted based on the Akaike information criterion value and 10-fold cross-validation
routine, and later good predictive ability was confirmed with an additional external validation dataset
with over 700 molecules. Moreover, the multi-start technique was applied to test if an automatic
model development procedure results in reliable results.

Keywords: 5-HT1A receptor; AutoML; OECD principles; curated database; QSAR model

1. Introduction

Quantitative structure–activity relationship (QSAR) models that have existed for many
years are applied to the drug discovery process, offering in silico assessment and screening
for the potential new drugs, which have not yet been assessed for in vitro or in vivo activity.
Based on the molecule structure, it could be predicted whether a given compound will
affect a chosen biological target and the strength of this effect [1]. The first successful QSAR
model was developed in the 1960s by Hansch and Fujita [2] and concerned the toxicity
of various chemicals on organisms. With the growing role of artificial intelligence (AI) in
the drug discovery process, the quality of models and the scale of their application have
increased [3].

Drug design and development is a challenging, costly, and time-consuming process
and is simultaneously characterized by a high failure rate [4]. The discovery of new drugs is
based on their efficacy in selected disease entities as well as their safety profile related to side
effects after administration and drug–drug or drug–food interactions. The entire process,
from the discovery of a new molecule to its introduction to the market, takes at least 10 years.
The efficiency of this process is low [5]. Almost 90% of potential drugs fail between the first
phase of clinical trials and the registration process [6]. Nowadays, artificial intelligence tools
are used at various stages of the drug discovery and development processes [7]. Application
of AI reduces the time needed to discover new drugs and the costs associated with in vitro
and in vivo animal experiments. So far, AI does not replace laboratory experiments, but it
is used as a complementary method. This is why it is so important to develop methods
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in the field of artificial intelligence [5]. They support the discovery of functions and
structures of proteins. These methods allow us to discover drugs’ binding sites to the
therapeutic targets [7]. Machine learning (ML), a field in artificial intelligence, is able
to predict properties of compounds based on available data [8]. Using ML with a focus
on a potential drug, various properties could be predicted: pharmacokinetic (rate of
absorption [9] and elimination [10], volume of distribution [11], etc.), pharmacodynamic
(ligand affinity/activity [12–14]), or the possible toxic effects [15]. Artificial intelligence
can also estimate the likelihood of drug–drug interactions [16]. Another domain of AI
application is chemical synthesis. Based on the data collected, AI can design a pathway for
the synthesis of a new compound [17]. One of the many applications of AI in the search for
new ligands is drug repositioning/repurposing, other therapeutic applications are sought
among well-known drugs [18].

As the application of QSAR models became a routine in the process of development of
new drugs, there was a need for regulations and guidelines to objectively determine the
reliability of developed models. In 2007, the Organization for Economic Co-operation and
Development (OECD) published “Guidance Document on the Validation of (Q)SAR Mod-
els”. This intergovernmental economic organization joins over 30 countries to coordinate,
harmonize policies and work together to solve international issues [19]. The guidance is the
work result of an expert group who started their work based on the “Setubal Principles”,
which were first proposed at the international workshop in Setubal (Portugal) in March
2002 [20]. The OECD reduced the number of principles to five, which are presented below:

1. A defined endpoint.
2. An unambiguous algorithm.
3. A defined domain of applicability.
4. Appropriate measures of goodness-of-fit, robustness, and predictivity.
5. A mechanistic interpretation, if possible [21].

The aim of this work was to create a QSAR model of ligand affinity for serotonin
5-HT1A receptor according to the above principles. The presented work is a continuation of
our research on the published preliminary model and the curated database [22]. To comply
with all the OECD principles, we focused on reducing the number of descriptors while
maintaining high-quality affinity predictions. The serotonin 5-HT1A receptor belongs to
the group of G protein-coupled receptors (GPCR) and is one of the best-studied receptors
in the serotonergic system. It is mainly located in the brain (midbrain, limbic, and cortical
regions) [23]. The serotonin receptor is an important biological target for researching new
drugs in the field of central nervous system diseases [24]. Activation of 5-HT1A is one of the
mechanisms of action of antidepressants, anxiolytics, and antipsychotics [25]. Partial ago-
nists (Aripiprazole, Clozapine, Buspirone, Trazodone, Ziprasidone) and 5-HT1A receptor
antagonists (Risperidone) are used in the treatment of depression, anxiety, schizophrenia,
and bipolar disorder [26,27]. Currently, available medications have numerous side effects.
For this reason, it is important to obtain a QSAR model that will effectively predict the
affinity of potential molecules affecting this receptor. For this reason, it is important to ob-
tain a QSAR model that will effectively predict the affinity of potential molecules affecting
this receptor.

In the presented work, individual parts contain the database description (training and
test sets), the results of experiments with the use of AutoML techniques, and the detailed
analysis of the OECD principles in connection to this work.

2. Materials and Methods
2.1. Training Dataset

The curated database containing 9440 unique ligands of 5-HT1A receptor, collected
from ZINC and ChEMBL databases, was used in this study [28,29]. Curation of the database
was described in previous research [22]. The affinity of compounds was presented by the
negative logarithm of the constant inhibition, the pKi value. Affinity to 5-HT1A receptor
varied in the range between 4.2 and 11.0. Based on the Simplified Molecular Input Line
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Entry Specification (SMILES) of each molecule, Mordred 2D descriptors were obtained
with Mordred package in Python 3 environment under a Linux operating system [30].

In our previous work, the number of inputs was reduced from over 1200 to 216 descriptors,
which were then used to develop a preliminary model [22]. In this work, we use these
216 descriptors as the primary dataset.

2.2. Test Dataset

In order to evaluate the predictability of the model, an external dataset was prepared,
which constitutes the test set. The data were retrieved from the GLASS database (https:
//zhanggroup.org/GLASS/, accessed on 1 September 2021). The GLASS (GPCR-Ligand
Association) database is an experimental data repository on GPCR–ligand interactions. The
sources of the data within the database are literature and public databases [31]. Originally,
over 5000 ligands of the 5-HT1A receptor affecting human cells were selected. The data
cleaning stage included removing duplicates, compounds with affinity determined with a
unit different than the inhibition constant (Ki), and in the last step, the compounds that are
also included in the curated database. Finally, 735 ligands were obtained with Ki values,
which were used to calculate pKi values.

2.3. Model

As in the case of the preliminary model, also in this study, the Automated Machine
Learning (AutoML) tool was used to create predictive models. The H2O platform provides
a tool to optimize the number of inputs (feature selection), algorithm selection, model
development, and optimization of parameters [32]. The model was created using Python
script, integrating both feature selection and 10-fold cross-validation (10-CV) schemes in
the single non-interactive run [33].

2.4. Model Metrics

Four goodness-of-fit metrics were used to evaluate the developed models: root mean
square error (RMSE), coefficient of determination (R2), Adjusted R2, and Akaike Information
Criterion (AIC). Explanations of the metrics are presented below (Equations (1)–(4)). The
performance of the QSAR model was assessed according to a 10-fold cross-validation
(10-CV) scheme using the curated database. Adjusted R2 and AIC were applied to verify
model performance on the test set. These values were important for obtaining information
on how many inputs are valid for the QSAR model. R2 adjusted, similar to the coefficient of
determination, should obtain the highest value. On the other hand, AIC and RMSE should
be as low as possible.

RMSE =

√
∑n

i=1(predi − obsi)
2

n
(1)

where RMSE = root mean square error, obsi and predi = observed and predicted values,
i = data record number, and n = total number of records.

R2 = 1 − SSres

SStot
= 1 − ∑n

i=1(predi − obs)2

∑n
i=1(obsi − obs)2 (2)

where R2 = the coefficient of determination, SSres = the sum of squares of the residual errors,
SStot = the total sum of the errors, obsi and predi = observed and predicted values, and
obs = arithmetical mean of observed values.

Adjusted R2 = 1 −
(
1 − R2)(N − 1)

N − p − 1
(3)

where R2 = sample R-square, N = total sample size, and p = number of independent variables.

AIC = 2k − 2 ln(L) (4)

https://zhanggroup.org/GLASS/
https://zhanggroup.org/GLASS/
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where AIC = Akaike Information Criterion, L = likelihood function for the model, and
k = number of estimated parameters.

The AIC value was calculated using the H2O Python module (H2O version = 3.32.1.6.) [34].

3. Results
3.1. Test Dataset

An introduction to the GLASS database is presented in the Materials and Methods
(Section 2). It contains over 700 5-HT1A receptor ligands. The pKi values ranged between
4.44 and 10.3, with a median of 7.22. In Figure 1, pKi’s distribution in GLASS (test set) and
the curated database (training set) is presented. For both databases, the distributions are
similar. The GLASS database was used for the evaluation of the QSAR model.
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Figure 1. Histogram of pKi value in training and test sets.

For a better comparison of databases, the following charts show the distributions
of features representing Lipiński’s rule of five among drugs present in the GLASS and
the curated database (Figure 2). The features’ distributions in both databases are similar,
pointing out a good coverage of data space among training and external testing datasets.

3.2. Model

The AutoML tool produced several models with a reduced number of inputs. Table 1
shows top the five models with the number of selected descriptors and the original model
based on 216 inputs. The RMSE, R2, Adjusted R2, and AIC were calculated according to the
equations presented above.

Table 1. Results of the AutoML model evaluation for training and test sets. RMSE—root mean square
error; R2—coefficient of determination; AIC—Akaike Information Criterion.

Inputs Number
10-CV External Testing

RMSE R2 RMSE R2 Adjusted R2 AIC

216 0.5437 0.7443 0.6806 0.6021 0.4362 1642.8
123 0.5523 0.7361 0.6830 0.5992 0.5185 1605.5
39 0.5774 0.7116 0.6926 0.5879 0.5648 1583.9
38 0.5782 0.7108 0.7282 0.5445 0.5196 1673.5
24 0.5926 0.6962 0.7276 0.5452 0.5298 1716.4
23 0.5941 0.6946 0.7597 0.5042 0.4882 1751.8
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Figure 2. Distribution of Lipinski’s rules features values in training and test sets. (A) Polar surface
area; (B) MW, molecular weight; (C) nRot, rotatable bonds; (D) SLogP, logP value; (E) nHBDon,
number of H-bonds donors; (F) nHBAcc, number of H-bond acceptors.

All presented models above are stacked ensemble models, which consist of so-called
base learners. The model development process in this case involves training a second-level
“metalearner” to find the optimal combination of the base learners. In this work, we have
applied GLM (generalized linear method) as a “metalearner” with a variable number of
base models. It is observed that decreasing the input number causes an increase in the
RMSE value, and a decrease in the determination coefficient in the case of the training set.
This observation indicates the complexity of predicting the affinity value of the compound
from its numerical representation towards the serotonin 5-HT1A receptor.

The results for the external set show slightly worse results in comparison to the internal
validation, which is expected. However, the differences are moderate, usually in the range
20% of the reference value. Overall, reported RMSE values indicate good predictability
of the model also for compounds outside of the training set. In order to choose the best
model, two additional measures of goodness-of-fit were introduced: Adjusted R2 and AIC.
Both criteria take into account the model’s complexity and therefore in the case of similar
predictions errors they favor simpler models. Based on the values of the Adjusted R2 and AIC
on the test set, the optimal model is the one created based on 39 descriptors (R2

adj = 0.5648,
AIC = 1583.9). A fine consensus between model predictability and complexity was found
escaping the curse of dimensionality and retaining high-level predictability of the QSAR
model. As an additional diagnostic test for the model, the residual analysis was conducted,
and a quantile–quantile plot (Q–Q plot) was drawn. It was observed that none of the
prediction errors exceeded 25%, and for six molecules from close to 9500 in the database,
the residual was between 20–25%. Moreover, based on the Q–Q plot it could be concluded
that the predictions are normally distributed (Supplementary Material File S1).
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Table 2 shows the structure of the best model developed using 39 descriptors. AutoML
H2O selected 17 models (from 340 initial), using GLM with Elastic Net module, and formed
a second-level stacked ensemble model.

Table 2. The structure of stacked ensemble with the coefficients of GLM with Elastic Net as a
“metalearner” model (39 inputs).

Name Coefficients

Intercept −1.0046
GBM_grid__1_AutoML_20210902_051708_model_54 0.6633
GBM_grid__1_AutoML_20210902_051708_model_20 0.1599

DeepLearning_grid__3_AutoML_20210902_051708_model_3 0.1089
XGBoost_grid__1_AutoML_20210902_051708_model_120 0.0848

DeepLearning_grid__3_AutoML_20210902_051708_model_8 0.0295
DeepLearning_grid__2_AutoML_20210902_051708_model_2 0.0263
DeepLearning_grid__3_AutoML_20210902_051708_model_2 0.0187
DeepLearning_grid__3_AutoML_20210902_051708_model_5 0.0058

XGBoost_grid__1_AutoML_20210902_051708_model_52 0.0066
DeepLearning_grid__2_AutoML_20210902_051708_model_3 0.0074

XGBoost_grid__1_AutoML_20210902_051708_model_95 0.0058
XGBoost_grid__1_AutoML_20210902_051708_model_131 0.0058
XGBoost_grid__1_AutoML_20210902_051708_model_90 0.0037

XGBoost_grid__1_AutoML_20210902_051708_model_113 0.0026
DeepLearning_grid__2_AutoML_20210902_051708_model_8 0.0025

XGBoost_grid__1_AutoML_20210902_051708_model_30 0.0026
GBM_grid__1_AutoML_20210902_044957_model_20 0.0005

As a point of reference, the linear model was established using Python package Linear
Regression [35]. The linear model created on the input vector consisting of 39 input
variables had the RMSE of 0.9718 and R2 of 0.1437, according to the 10-CV method.

3.3. Compliance with OECD Principles

The purpose of the OECD principles is to provide detailed information and guidelines
explaining the application of validation rules to various types of QSAR models. Figure 3
shows principles from the Guidance Document on the Validation of (Quantitative) Structure-
Activity Relationship Models and answers to how the QSAR model satisfies the rules, which
is the subject of this paper.

3.3.1. Defined Endpoint

The first OECD principle specifies that the created QSAR model should possess a
clearly defined endpoint: a parameter that is predicted by a given model. The guidance
specifies few groups of endpoints (physiochemical properties, environmental fate, ecologi-
cal effects, human health effects) [21]. In our case, the endpoint is the pKi value, which is
the negative logarithm of the inhibition constant (Ki). It is an indication of how potent an
inhibitor is and denotes the concentration required to produce half-maximum inhibition of
the receptor (Equation (5)).

P + I
Ki

 P•I (5)

where P = target protein, I = inhibitor, Ki = inhibition constant, and P•I = the reversibly
bound protein inhibitor complex [36].

There are many studies using the pKi value as an affinity value of compounds, in
terms of affinity for serotonin receptors [37–41] or other biological targets [42–46]. Defined
endpoint is a parameter that enables a comparison of its value between other studies.
Without a doubt, pKi fulfills this requirement.
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3.3.2. Unambiguous Algorithm

The second principle, called “unambiguous algorithm,” specifies that the algorithm
used to build the QSAR model should be precisely defined, ensuring transparency so
that the others can re-create it and understand the model easily. The transparency of the
model is based both on clearly defined descriptors building the QSAR model and modeling
methods/techniques [21]. In our research, 2D chemical descriptors produced with the use
of the Mordred package were applied. The authors of this package thoroughly described
each descriptor [47]. This meticulous documentation and an Open Source code of the
Mordred package ensures the clarity of the input information of the model, which fulfills
part of this principle.

The second principle points out that transparency is also ensured by methods applied
to develop the predictive model. According to the OECD documentation, an algorithm
“may be a mathematical model or a knowledge-based rule developed by one or more
experts”. The guidance presents algorithms commonly used in the QSAR modeling (Uni-
variate regression, Multiple Linear Regression, Principal Component Analysis, Principal
Component Regression, Partial Least Squares, Artificial Neural Nets, Fuzzy Clustering and
Regression, K-nearest Neighbour Clustering, Genetic Algorithms) [21]. In our previous
work, the obtained results were presented with the use of an automated machine learning
technique in comparison with a simpler computational technique-linear regression model
(LM) [22]. The LM structure and the principle of operation are easy to read and understand
by a human. However, its simplicity leads to a much higher and unacceptable, from prac-
tical point of view, error value (RMSE) in comparison to a model developed by AutoML.
These results indicate that simple techniques (readily interpretable and transparent) will
not be able to create the model needed to predict the affinity of 5-HT1A receptor ligands
with high efficacy.

The AutoML methods have been used to create the 5-HT1A receptor’s QSAR model.
This technique reduces the transparency of the algorithm. To meet the second OECD rule,
other prediction methods were sought, but the AutoML H2O model proved to be the best
so far. Usage of AutoML techniques offers far greater possibilities than creating a simple
QSAR model with, i.e., linear regression.
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The stacked ensemble model based on 39 inputs is composed of several types of
models, i.e., DeepLearning (seven models), GBM (three models), and XGBoost (seven
models). Most of the modeling techniques mentioned above work under the clear princi-
ples, ensuring their transparency. However, artificial neural networks (ANN) including
DeepLearning models are so called “black boxes”. The term is related to their complex
structure and burden of computational operations beyond human perception capability.
It is also associated with the elements of randomness included in the initialization of the
model weights and the learning process by stochastic algorithms.

Compared to our preliminary AutoML model, which contained 342 models [22], the
final QSAR model has fewer models (17) for better transparency. The authors of the OECD
principles are particularly careful when, in the case of models based on neural networks,
users must rely on a validation process to determine whether an ambiguous algorithm can
produce reliable results in regulatory applications. For these reasons, we used an external
database to test the resulting model.

The purpose of the second OECD principle, in addition to provide an explanation of
how the model is produced, is the ability to be reproduced by other scientists. AutoML
script is freely available to users [32] and the use of the same settings can lead to compa-
rable results. Moreover, our final model with 39 inputs is freely available on the GitHub
platform [48] and may be used for different data. For validation purposes, we conducted
30 independent experiments (multi-start method) with AutoML H2O script based on a
curated database containing 39 descriptors and the same parameters (e.g., experiment du-
ration, seed values), and we obtained highly reproducible predictions (Table 3). The results
of one-way ANOVA for the training dataset were F value = 0.0002 and p-value = 1.0000
(0.9999999), respectively (Supplementary Table S1). The ANOVA results for the external
dataset were F value = 0.0085 and p-value = 1.0000 (0.9999999) (Supplementary Table S2).
For the second metric to determine the dispersion of predicted values, we examined the
coefficient of variation (RSD) value. The use of a curated database did not exhibit high
diversity, with respect to the predicted pKi values (RSD was in the range of 0.09–1.54% and
the median was 0.28%). In the case of the GLASS database, the RSD value was in the range
of 0.12–1.27%, and the median = 0.36%. As expected, these results show that the AutoML
technique provides non-identical predictions, when started multiple times on the same
data. However, the differences between results are not statistically significant. Moreover,
all the final models produced by these 30 repeated tests are ensemble models and the types
and number of models within their structures are also comparable.

Table 3. Results of one-way ANOVA tests from the multi-start method (30 repetitions).

Measure Curated Database GLASS Database

F value 0.0002 0.0085
p-value 1.0000 1.0000

Statistically significant different predictions False False

The last part of the principle “unambiguous algorithm” demands explanation on
how the QSAR estimates are obtained. This in fact leads directly to the fifth OECD princi-
ple mechanistic interpretation, which is included in the following sections of this article
(Section 3.3.5). However, another angle regarding versioning of the software needs to be
raised here. Open Source is based on the frequent publishing/updating policy, so the
software versions are changing rapidly. AutoML by H2O is equipped with a strict version
control system and reporting version of the modeling software at the beginning of the mod-
eling procedure and when the binary object representing trained model is being opened.
If any mismatch between the version of the saved model and the software used for its
opening is being reported, it stops the model from being opened. Therefore, no unexpected
behavior of the model is possible, and the software itself performs rigorous version checks.
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3.3.3. Applicability Domain

Another OECD principle is “defined field of application”. This rule sets the range of
molecules for which the QSAR model should lead to correct predictions. The importance of
this principle is that the model can be expected to provide reliable forecasts for chemicals
that are similar to those used in model development [21]. Predictions that go beyond the
applicability domain (AD) are extrapolations and are less likely to be reliable. The domain
is limited to ligands affecting the 5-HT1A receptor.

The obtained model was created based on a diverse database in terms of structure.
According to the Tanimoto coefficient, the curated database is characterized by the de-
gree of similarity of the molecules to each other, in the range between 0.1553 and 1.0
(median = 0.37) [49]. The above results indicate that the ligands in the training set are
highly diversified, which results in the possibility of using the QSAR model to predict
compounds of various chemical structures. The model is not limited to a specific group of
derivatives in terms of molecular structure. The limitation of AD is the pKi value, which
for the assay set is in the range between 4.2 and 11, so if the model is used to predict the
value of the compound’s affinity for the 5-HT1A receptor, where the value will be outside
this range, it may lead to poor or completely incorrect prediction of the pKi value.

The database from which the predictive model was created is characterized by diver-
sity also in terms of parameters such as molar mass (149–1183, median = 406) or polar
area (3.24–211.18, median = 55.87). The distributions of the values of the individual Lipin-
ski’s rule parameters located at the point describing the comparison of the training and
test databases are presented in Figure 2. These values indicate that the curated database
contains the most compounds whose parameters indicate a high potential to become a
drug. With respect to the applicability domain, the model is able to predict pKi values for
substances that are potential drugs.

3.3.4. Measures of Goodness-of-Fit, Robustness, and Predictivity

The fourth principle of the OECD Guidance focuses on the need to perform statistical
validation of the QSAR model. This process is divided into the performance of the internal
validation obtaining the goodness-of-fit and robustness of the algorithm, and the pre-
dictability obtained from the performance of the external validation. Due to the significant
need to validate the model, the OECD organization defines in this principle appropriate
measures related to the fit, robustness, and predictability to the created predictions of
compounds affinity based on the structure [21].

The expert group listed in the document the most popular techniques for internal
validation. They are cross-validation (leave-one-out (LOO) and leave-many-out (LMO)),
bootstrapping, Y-scrambling or response permutation testing, and training/test set split-
ting [21]. The technique used in our study was ten-fold cross-validation (10-CV) as leave-
many-out (LMO) procedure. Groups of compounds for each fold were chosen randomly
and only used once for internal model validation.

External validation is the only way to determine the predictability of a QSAR model.
The external set that has not been attached to the database used to create the model applies
here, so the test set does not affect the development of the model. External validation does
not replace internal validation, but only complements it. To make statistical conclusions
about the predictability of the model compounds’ affinities against the 5-HT1A receptor,
the GLASS database (over 700 compounds), described in the Materials section (Section 2),
was used.

In this experiment, two parameters were used for the curated database (training set)-
internal validation: RMSE and coefficient of determination. Additionally, these parameters
were used for GLASS database (external validation) and two more parameters: Adjusted R2

and Akaike Information Criterion. R2 and Adjusted R2 are mentioned in the guidance as an
example of a parameter determining a good fit of the model. On the other hand, the error
value in the OECD document was presented, inter alia, as mean squared error (MSE). In
our work, we use the square root of this value (RMSE).
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3.3.5. Mechanistic Interpretation

Mechanistic interpretation is not a mandatory principle to be fulfilled. However, an
explanation of the relationship between the chemical structure and affinity may confirm
the acquired knowledge and expand it on these dependencies. The fifth OECD principle
encourages the validation process to find mechanistic interpretations that can contribute to
a better understanding of statistical validity and the applicability domain. Compounds in
these models are presented as molecular descriptors, a mathematical representation of the
structural features of molecules [21].

It is important that the method of calculating molecular descriptors is accessible to the
user and that it can be applied reproducibly to all chemical structures. Therefore, in our re-
search, 2D chemical descriptors produced by the Mordred package were used. All features
were described by the authors, which gives the possibility of model interpretation [47].

AutoML techniques are proficient in selecting descriptors relevant to the model. Not
all descriptors may be important for prediction, that is why feature selection is an important
step of model development. The OECD guideline points out that a large number of variables
can cause modeling errors due to the overfitting of model to data, which reduces its
robustness and generalization ability. Therefore, the reduction in the parameters presented
here by the numerical representation of the molecules leads to a more general model that
allows affinity prediction for compounds, not in the curated database on which the model
was created. In our previous work, we showed mechanistic interpretation of model using
SHAP analysis [22].

Shapley Additive Explanations (SHAP)

The best model was analyzed in order to elucidate complex interrelations between
input variables and predicted pKi values using Shapley Additive Explanations (SHAP)
method. SHAP analysis provides an objective assessment of the input of every single
variable on the final outcome of the model. SHAP calculations are based on the theory of
cooperative games provided by Lloyd Shapley in 1951 and resulted in a Nobel Memorial
Prize in Economic Sciences in 2012. The theory allows the assignment to every cooperative
game a unique distribution among all players of a total surplus generated by the coalition
of all players. Shapley values were found to be useful in the explanation of predictive
models, especially within the machine learning domain. Based on that, the model’s inputs
are treated as players and the predicted value is the outcome of the coalition. The Shapley
value provides an answer to the question of how important the input of each player is
(variable in our case) to the overall result (prediction), and what share can be assigned to it.
The contribution of every participant should be proportional to their marginal contribution
in-game outcome. The Shapley value allows the assessment of an individual’s contribution
to the final results in an efficient, symmetrical, and additive way, including the possibility
to detect inputs with zero contributions. The marginal contribution for each individual
is calculated by generating all permutations of individuals and their results obtained by
the formed coalition. The result from the computational analysis provides a ranking of
variables with absolute average SHAP value. Moreover, there is the possibility of assessing
the influence of variable value on the final model outcome. It might be positive or negative,
and its magnitude may differ within a variable range [50,51].

The SHAP plots were produced using an in-house developed Model Interpretation
tool, which is publicly available on the GitHub website [52]. The overall variable importance
might be reflected by the mean absolute SHAP value which indicates how much on average
the variable affects the predicted pKi value. By investigating the obtained results, it might
be observed that the marginal contribution for every variable differs and all features are in
the range of 0.021–0.088. A short summary of the calculations for the 10 most important
variables is presented in Table 4, whereas full results including variable descriptions are
available in Supplementary Materials Table S3.
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Table 4. Summary representing mean absolute SHAP value (av|SHAP|) for the 10 most important
variables.

Variable av|SHAP| Description

SMR VSA3 0.088 MOE MR VSA Descriptor 3

GATS3p 0.088 Geary autocorrelation of lag 3 weighted by polarizability

PEOE VSA2 0.083 MOE Charge VSA Descriptor 2

SaaaC 0.083 Sum of aaaC

AATSC3se 0.082 Averaged and centered Moreau–Broto autocorrelation of lag 3 weighted by Sanderson EN

nBondsS 0.078 Number of single bonds in non-kekulized structure

AATS6dv 0.073 Averaged Moreau–Broto autocorrelation of lag 6 weighted by valence electrons

GATS6p 0.071 Geary coefficient of lag 6 weighted by polarizability

PEOE VSA9 0.071 MOE Charge VSA Descriptor 9

IC2 0.069 2-ordered neighborhood information content

The two most important variables are characterized by mean absolute SHAP value
equal to 0.088: MOE MR VSA Descriptor 3 (SMR VSA3) and Geary autocorrelation of
lag 3 weighted by polarizability (GATS3p). Absolute value of SHAP above 0.08 was also
calculated for the following three variables: PEOE VSA2, SaaaC, and AATSC3. Moreover, it
is observed that variable contribution to prediction might be positive or negative in relation
to its value itself. By taking the five mentioned above, a high value of SMR VSA 3 and
GATS3p negatively impacts the pKi predicted by the model, whereas a higher value of
PEOE VSA2, SaaaC, and AATSC3se positively influences the pKi predicted by the model
(Figure 4).
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Figure 4. Summary of SHAP analysis for 10 input variables with the overall highest impact on
model predictions. SMR VSA3—MOE MR VSA Descriptor 3; GATS3p—Geary autocorrelation
of lag 3 weighted by polarizability; PEOE VSA2—MOE Charge VSA Descriptor 2; SaaaC—sum
of aaaC; AATSC3se—averaged and centered Moreau–Broto autocorrelation of lag 3 weighted by
Sanderson EN; nBondsS—number of single bonds in non-kekulized structure; AATS6dv—averaged
Moreau–Broto autocorrelation of lag 6 weighted by valence electrons; GATS6p—Geary coefficient
of lag 6 weighted by polarizability; PEOE VSA9—MOE Charge VSA Descriptor 9; IC2—2-ordered
neighborhood information content.
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Model analysis in a more detailed way shows trends between variables and their
impact on the predicted outcome by the model. For example, Figure 5 presents the relation
of the calculated SHAP value to SMR VSA3. It is observed that a value equal to or higher
than 15 causes a drop in pKi predicted by the model. In the case of SMR VSA3 ≤ 10, it may
be expected that compound affinity for 5-HT1A receptor will increase. SMR VSA represents
the polarizability of a molecule; therefore, in light of the observed relation between the
descriptor and SHAP value, it might be assumed that too many polarizable groups are
not desired in the case of active compounds. Different MR VSA descriptors were found to
be important to predict the affinity of compounds against molecular targets. An example
might be the model of human ether-a-go-go-related gene (hERG) blockers developed by
Moorthy et al. [53].
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A closer look into the impact of GATS3p on predicted pKi shows that a descriptor
value below 1.0 indicates a higher affinity of a molecule to the 5-HT1A receptor (Figure 6). It
is worth pointing out that GATS3p has also embedded information about the polarizability
of the compound. Topological distribution of polarizability was identified as important for
predicting the affinity of molecules against other targets such as mitogen-activated protein
kinase-interacting kinases (MNK1, MNK2) [54] or apoptosis inducers for human breast
cancer cell line T47D and human colorectal cancer cell line DLD-1 [55].

Analysis of the variables’ impact on the pKi value predicted by the model could
also be directed from global effects and condensed into local and more detailed form.
Going from SHAP analysis to other available methods of model explanation, it might be
advisable to apply the partial dependence plot (PDP) method that shows the marginal
effect of one or two features on the predicted outcome by the model [56,57]. PDP can
show whether the relationship between predictions and input variable is linear or more
complex. For example, when applied to a linear regression model, PDP shows a pure linear
relationship, whereas for neural networks, the expected relation will be nonlinear and
more complex. PDP analysis is implemented in the AutoML H2O package and developed
models can be easily analyzed using internal functions delivered by software. PDP analysis
was conducted using an in-house developed tool built on the H2O package, capable of
automatically exporting results in the graphical form of 3D plots [52]. An example of the
PDP result for the two most important variables according to SHAP analysis (SMR VSA3
and GATS3p) is visualized in Figure 7. It is observed that in the case of both variables,
lower values positively influence the pKi predicted by the model. The opposite direction
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in model outcome is observed for higher values of both variables. It is worth mentioning
that within the analyzed domains, the functional relationship is not monotonic. Due to the
nonlinearities affecting the predictions for both variables, the result of the interaction is
complex. It might be challenging to describe it by a single number representing directional
effect such as in linear models with variable interaction terms. Such simplification will
be possible, but it will be occupied by the loss of information represented by the model.
The complete result of PDP analysis, depicted by over 700 unique plots, is provided as
Supplementary Material File S2.
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The model’s explanation could be conducted in more detailed way in order to find
local effects using Individual Conditional Expectation (ICE) or Local Interpretable Model-
agnostic Explanations (LIME) methods. ICE method focuses on individual data instances
and provides the functional relationship between predictions for a single record by changing
the chosen feature value. ICE plot visualizes the dependence of the model’s prediction and
the feature for each instance separately, resulting in a single line per data record, compared
to one line per feature in one-dimensional PDP. The result of the analysis is a set of points
showing changes in single instance outcome in relation to feature modification [58]. ICE
for a single feature can be computed by keeping all other variables unchanged. In the case
of QSAR models, that might be helpful when the single structure is an object for further
modifications. It could also help with a better understanding of the impact of changes in
selected features on a compound’s expected activity or properties. On the other hand, the
LIME method relies on new dataset generation that consists of perturbed samples from
the original database and using the model under analysis to generate predictions. Then,
an interpretable model, such as linear regression or decision tree, is trained, weighting the
proximity of the sampled instances to the instance of interest. The learned model should be
a good approximation of the machine learning model predictions locally, but it does not
have to be a good global estimate. LIME can also lead to the misinterpretation of results due
to the possibility of unlikely values of features in generated database utilized for surrogate
model development.

4. Discussion

Based on a conducted literature review, no work has been published that includes a
QSAR model predicting the affinity of ligands against the 5-HT1A receptor while meeting
the OECD guideline for (Q)SAR model validation—this also includes our preliminary
findings, where no OECD angle was taken into consideration [22]. There are several models
that meet OECD regulations concentrated on the other biological targets: HIV-I reverse
transcriptase, tyrosinase, dopamine transporter, Mer kinase, and SIRT1. In these examples,
multiple linear regression, evolutionary computation, and Monte-Carlo-based methods
were applied to develop QSAR models. The above-mentioned research examples were
mainly conducted on the databases of about 50 compounds, with one exceeding the number
of 100 molecules, and just one database including more than 1400 compounds [59–63]. Our
project is an extension of previous works both in terms of the choice of biological target
(5-HT1A) and the size/diversity of the training database (almost 9500 unique compounds).
A large number of molecules in a database and their structural and physicochemical
diversity cause difficulties in the development of the QSAR model using simple modeling
tools together with the satisfying quality of predictions.

In this paper, besides the development of a predictive model, we provided a detailed
explanation of whether our model satisfies the OECD rules. Our model fully satisfies four
of the five OECD principles (defined endpoint; defined domain of applicability; appropriate
measures of goodness-of-fit, robustness, and predictivity; mechanistic interpretation). The
only principle partially satisfied is the ‘second principle’—unambiguous algorithm. The
Mordred descriptors used to create the model are clearly and thoroughly documented by
the software developers, which is the source of transparency of the resulting QSAR model.
OECD recommendations indicate that the algorithm must provide information on how
accurately the estimated values were obtained so that other scientists can reproduce the
calculations. Our final model, based on 39 inputs, has a structure of expert committee
in which artificial neural networks are present among other algorithms. This introduces
ambiguity into the predictions obtained. The guideline [21] for the implementation of a
neural network-based model indicates the need for external validation of the model. In our
case, external validation was performed using the GLASS database [31].

In order to prove the reproducibility of the model development process, we performed
30 independent attempts to create the model, setting the same parameters using the AutoML
tool. The numerical values of predictions in both testing and validation procedures were
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almost the same for every repetition. As our experiments showed, it was impossible to
obtain a good model with a low error and high coefficient of determination without using
complex computational tools such as deep learning methods. However, in our study, we
showed that multiple experiments under the same conditions using the AutoML H2O
tool led to almost the same results. The differences between predictions were found to be
statistically insignificant. For 8 out of nearly 9500 compounds, the RSD (relative standard
deviation) value exceeded 1%, whereas the highest RSD value of 1.54% (curated database)
was observed for all 30 repetitions. When converted to Ki (nM) values, which is the primary
outcome in receptor affinity tests, the RSD in the predicted values for this compound is
19.33%. Food and Drug Administration regulations—“Bioanalytical Method Validation
Guidance for Industry”—on ligand binding assays indicate a level of precision between
assays of ±20%. Our predictions’ diversity value falls within this range. The information
provided indicates that our final model leads to affinity predictions that are within the error
range indicated by the FDA [64].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14071415/s1, File S1: Residual analysis and QQ
plot; File S2: PDP analysis; Table S1: predictions of 30 test curated database; Table S2: predictions of
30 tests GLASS database; Table S3: Summary of features importance. av|SHAP|—mean absolute
SHAP value; SMR VSA3—MOE MR VSA Descriptor 3; GATS3p—Geary autocorrelation of lag 3
weighted by polarizability; PEOE VSA2—MOE Charge VSA Descriptor 2; SaaaC—sum of aaaC;
AATSC3se—averaged and centered Moreau-Broto autocorrelation of lag 3 weighted by Sanderson
EN; nBondsS—number of single bonds in non-kekulized structure; AATS6dv—averaged Moreau-
Broto autocorrelation of lag 6 weighted by valence electrons; GATS6p—Geary coefficient of lag 6
weighted by polarizability; PEOE VSA9—MOE Charge VSA Descriptor 9; IC2—2-ordered neighbor-
hood information content; SLogP—Wildman-Crippen LogP; SpMAD Dzi—spectral mean absolute
deviation from Barysz matrix weighted by ionization potential; JGI8—8-ordered mean topological
charge; SlogP VSA1—MOE logP VSA Descriptor 1; MATS5d—Moran coefficient of lag 5 weighted by
sigma electrons; ATSC5i—centered Moreau-Broto autocorrelation of lag 5 weighted by ionization
potential; SpMAD Dzse—spectral mean absolute deviation from Barysz matrix weighted by Sander-
son EN; GATS8se—geary coefficient of lag 8 weighted by Sanderson EN; VSA EState1—VSA EState
Descriptor; SlogP VSA3—MOE logP VSA Descriptor 3; PEOE VSA8—MOE Charge VSA Descriptor 8;
JGI4—4-ordered mean topological charge; SsssCH—sum of sssCH; SlogP VSA11—MOE logP VSA
Descriptor 11; GATS6are—Geary coefficient of lag 6 weighted by allred-rocow EN; SdO—sum of dO;
JGI9—9-ordered mean topological charge; AATS7i—averaged Moreau-Broto autocorrelation of lag
7 weighted by ionization potential; GATS7s—Geary coefficient of lag 7 weighted by intrinsic state;
JGI7—7-ordered mean topological charge; CIC5—5-ordered complementary information content;
Estate VSA6—EState VSA Descriptor 6; MATS7se—Moran coefficient of lag 7 weighted by Sanderson
EN; VSA EState5—EState VSA Descriptor 5; nBase—basic group count; MATS7c—Moran coefficient
of lag 7 weighted by Gasteiger charge; GGI8—8-ordered raw topological charge; SaasN—sum of
aasN; SaasN—Geary coefficient of lag 8 weighted by intrinsic state.
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