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Abstract: Introduction of a new drug to the market is a challenging and resource-consuming process.
Predictive models developed with the use of artificial intelligence could be the solution to the
growing need for an efficient tool which brings practical and knowledge benefits, but requires a large
amount of high-quality data. The aim of our project was to develop quantitative structure–activity
relationship (QSAR) model predicting serotonergic activity toward the 5-HT1A receptor on the basis
of a created database. The dataset was obtained using ZINC and ChEMBL databases. It contained
9440 unique compounds, yielding the largest available database of 5-HT1A ligands with specified
pKi value to date. Furthermore, the predictive model was developed using automated machine
learning (AutoML) methods. According to the 10-fold cross-validation (10-CV) testing procedure,
the root-mean-squared error (RMSE) was 0.5437, and the coefficient of determination (R2) was 0.74.
Moreover, the Shapley Additive Explanations method (SHAP) was applied to assess a more in-depth
understanding of the influence of variables on the model’s predictions. According to to the problem
definition, the developed model can efficiently predict the affinity value for new molecules toward
the 5-HT1A receptor on the basis of their structure encoded in the form of molecular descriptors.
Usage of this model in screening processes can significantly improve the process of discovery of new
drugs in the field of mental diseases and anticancer therapy.

Keywords: 5-HT1A receptor; curated database; QSAR; Mordred descriptors; AutoML; pKi; SHAP

1. Introduction

Serotonin (5-HT, 5-hydroxytryptamine) is mainly produced and present in the pe-
ripheral tissues. Only 5% of this monoamine occurs in the brain [1]. Serotonin interaction
with various receptors leads to modulation of numerous physiological and pathological
processes, in both the peripheral and the central nervous system (CNS). Dysregulation
of the serotonergic system causes many psychiatric and neurological disorders, such as
migraine, pain, anxiety, schizophrenia, movement disorders, and depression [2,3]. Among
these, the latter affects over 300 million people worldwide, irrespective of gender, race,
or socioeconomic differences. Untreated depression may lead to deterioration of health
and quality of life and, in the advanced form of disease, to suicide [4]. There are currently
14 distinguished subtypes of serotonin receptors, of which the 5-HT1A receptor is the
most researched and described [5]. This receptor plays an important role in neuronal
activity functions (muting neural transmission, synaptic plasticity, neurogenesis, and neu-
roprotection) and in changes of behavior, as confirmed by animal studies (reduction of
anxiety, depression, and pain) [1,3]. Moreover, the 5-HT1A receptor may become a target
for the anticancer treatment of colorectal cancer, small-cell lung cancer, bladder cancer, and
prostate cancer. The antitumor effect may be mediated by antagonism of 5-HT1A receptors
through blocking serotonin-induced tumor growth [6].

Discovery of compounds with specific activity is a very time-consuming and costly
process [7]. The efficacy of introduction of a drug to the market is very low. It is estimated
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that the success rate of a clinical trial is a few percent. According to the data gathered by
Wong et al., the overall success rate, depending on the disease, sponsor, biomarker presence,
lead indication status, and time, can vary from 1.2% to 8.3% [8]. Therefore, it is paramount
to employ every available technique to increase drug development efficiency. A field of
science that effectively accelerates the drug discovery and development process is artificial
intelligence (AI) with a specific branch that includes machine learning (ML). By employing
ML tools to available data, both the activity of compounds and their physicochemical
properties can be predicted. A specific class of model describing the chemical structure of
binding compounds with their biological activity is called a quantitative structure–activity
relationship (QSAR) [7].

In the current state of knowledge, contemporary QSAR models for 5-HT1A receptors
mainly represent classification tasks. Thus, the threshold-based distinction between inactive
and active compounds or between agonists and antagonists of the 5-HT1A receptor is at
scope without any concern of the strength of this activity [2,9,10]. As this approach is still
valuable for the drug discovery phase, more sophisticated regression-based models are
certainly desirable for their ability to predict potency of a future drug candidate. A few
studies of regression models were based on a specific group of compounds in terms of
their chemical structure, e.g., arylpiperazinthioalkyl or thienopyrimidinone derivatives.
The target value was Ki—a continuous variable representing a compound’s affinity to the
receptor. The tested compounds also influenced other types of receptors, α1-adrenergic
and 5-HT1B, respectively [11,12]. Among the studies in which the compounds act only on
the 5-HT1A receptor and the affinity value was predicted, only arylpiperazine derivatives
appeared [13–15]. To our best knowledge, there are no Ki/pKi value prediction studies
with use of a database containing 5-HT1A ligands diverse in terms of both structure and
physicochemical properties.

The aim of our work was to obtain the most suitable model to predict compound
activity for the 5-HT1A receptor, based on the largest possible curated database acquired
during this research. For the output, we chose pKi (negative logarithm of inhibition
constant Ki) as a measure of ligand affinity to the target [16]. For modeling, we used the
automated machine learning tool (AutoML) from the H2O AutoML platform [17]. Our
secondary objective was to explore the possibility of fully automated model development
in the area of drug discovery, as AutoML was employed for both feature selection and
final model development. In the area of cheminformatics, compounds can be represented
by various types of graphs, descriptors, or image-based representations as input data to
create a predictive model [18]. In our research, we chose QSAR models based on standard
molecular descriptors.

In the following sections, we describe the processes of database development, curation,
and analysis. Furthermore, QSAR modeling with AutoML is depicted including feature
selection and search for a final QSAR model, together with its analysis via an explainable
AI approach.

2. Materials and Methods
2.1. Database

In this study, we used two publicly available databases, ChEMBL and ZINC. Among
compound characteristics, the databases contain data on the bioactivity, which are regularly
extracted from scientific articles [19,20].

The databases were downloaded and processed offline with the use of various tools
such as DataWarrior, Python library Pandas, and RDKit [21–23].

Data processing introduced a merging procedure of two databases, checking for errors
in data (i.e., non-numerical values), and checking for missing values and duplicates of
molecules between two source databases, i.e., ChEMBL and ZINC.

The next step in building the database was to add molecular descriptors to the cor-
responding pKi values. Molecular descriptors are defined as a result of mathematical
procedures that transform the chemical information encoded in the symbolic represen-
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tation of a compound into a useful numerical value. The Mordred package was used to
calculate descriptors due to its high computational efficiency and stability [24]. In our
research, we used two-dimensional (2D) descriptors to avoid the impact of compound
optimization and parameters related to the three-dimensional properties of molecules.
Mordred was executed with the Python 3 environment under a Linux operating system.

2.2. AutoML Model

This computational experiment was designed to develop a multiple-input/single-
output (MISO) model employing automated machine learning tools (AutoML). The inputs
were abovementioned molecular descriptors calculated with the use of the Mordred pack-
age, and the output of the model was the pKi affinity value for the 5-HT1A serotonin
receptor. AutoML tools can develop complex empirical models with high efficiency and at
reduced computational time, while maintaining good quality. In this study, we used H2O
AutoML with a Python interface [17]. In order to further automate the process, we wrote a
Python script [25] devoted to combining four basic stages of modeling: feature selection,
algorithm selection, model development, and parameter optimization. A scheme of the
machine learning workflow applied in this experiment together with AutoML settings is
presented in Figure 1. All stages of the presented workflow are done automatically. The
user provides only the preprocessed dataset and settings for AutoML, such as computation
time, number of n_try, and feature selection threshold.
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At every stage, we used all available algorithms in the H2O implementation of Au-
toML, i.e., distributed random forest (DRF), extremely randomized trees (XRT), generalized
linear model (GLM), extreme gradient boosting machine (XGBoost), gradient boosting
machine (GBM), deep learning (fully connected multilayer artificial neural network), and
stacked ensemble models. Ensemble models are created in two ways: one ensemble con-
tains all the models, and the second ensemble contains just the best-performing model from
each algorithm class/family. Therefore, the “best of family” stacked ensemble model was
optimized for production use since it only contains six base models. After specifying a list
of base models, a metalearner was trained and tested. During computational experiments,
the standard GLM algorithm was used with non-negative weights and Lasso or Elastic
regularization as a metalearner. Optimization of the model parameters was done via a
random search of hyperparameters [26].

Production model performance was evaluated according to 10-fold cross-validation
(10-CV) and expressed by two goodness-of-fit metrics: root-mean-square error (RMSE) and
coefficient of determination (R2). For reference, please see Equations (1) and (2).

RMSE =

√
∑n

i=1 (predi − obsi)
2

n
, (1)

where obsi, predi are the observed and predicted values, i is the data record number, and n
is the total number of records.

R2 = 1 − SSres

SStot
= 1 − ∑n

i=1(predi − obs)2

∑n
i=1(obsi − obs)2 , (2)

where R2 is the coefficient of determination, SSres is the sum of squares of the residual
errors, SStot is the total sum of the errors, obsi, predi are the observed and predicted values,
and obs is the arithmetical mean of observed values.

The Shapley Additive Explanations method (SHAP) [27] was applied to the best
developed model to assess the influence of variables on the pKi value. The general
procedure behind SHAP calculation is related to the theory of cooperative games developed
by Lloyd Shapley in 1953. Shapley values are used for explanation of the predictive
model, especially in machine learning [28]. According to the theory introduced by Shapley,
if a group of individuals cooperate and form a coalition to achieve a particular goal,
e.g., winning the game or finalizing a project, the payoff for every participant should
be proportional to their marginal contribution. Proper calculation of each individual’s
contribution to the final results should be efficient, symmetrical, and additive. A capability
to detect individuals with zero contribution is also required. The solution which meets all
the above criteria is called the Shapley value. The marginal contribution for each individual
is calculated by generating all permutations of individuals and their results obtained by
the formed coalition. Implementation of this theory in the machine learning area leads to
the variables treated as individuals creating a coalition, with the predictions of the model
as the outcome of cooperation. The question that SHAP analysis answers is how much
and in which direction each variable influences the model outcome. The results from the
analysis provide a ranking of variables based on the absolute average SHAP value, and
they allow finding functional relationships between variables and model predictions.

Computations were executed on a grid system composed of 29 workstations (542 threads)
working under the Linux openSUSE Tumbleweed operating system.

3. Results
3.1. Bulding Database

Using the available ZINC and ChEMBL databases, we obtained a curated database
containing 9440 unique ligands of the 5-HT1A serotonin receptor.
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In the first step, the two databases were downloaded separately (November 2020).
After removing duplicates, the ZINC database contained 8025 and the ChEMBL database
contained 3624 unique molecules, respectively. We created a third database derived from
the two previously mentioned databases. The total number of compounds was 11,649.
However, there were identical compounds found in both ZINC and ChEMBL databases.
The total number of duplicates in the combined databases was 3994. The way of handling
duplicates depended on pKi differences between the respective compounds from the
ZINC and ChEMBL databases ranging from 0 to 4.46. Duplicated compounds with a pKi
difference greater than 0.1 were removed completely from the pooled database (212 pairs
of molecules). For the duplicates with a pKi difference less than or equal to 0.1, the
compounds from the ZINC database were selected. Ultimately, we obtained a database
with 9440 unique compounds. The development of the curated database of 5-HT1A ligands
is shown in Figure 2.
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3.2. Exploratory Analysis of the Curated Database
3.2.1. Statistical Exploratory Analysis

The 5-HT1A receptor activity is reported as a negative logarithm of the inhibition con-
stant in the range from 4.2 to 11.0 [16]. The pKi distribution is symmetrical and resembles a
normal distribution, which is the most common distribution found in nature. The distribu-
tion of pKi values is shown in the histogram below (Figure 3). The Gaussian distribution
supports the statement that the represented database, containing many compounds, was
suitable for modeling the 5-HT1A-mediated serotonergic activity of various compounds.
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According to the calculated Tanimoto similarity coefficient by the RDKit package,
the similarity of the compounds to each other was within the range of 0.1553–1.0 for the
curated database (median = 0.37). The pairs of compounds with a similarity equal to 1 are
considered stereoisomers [23]. Figure 4 illustrates the distribution of the similarity value
from the Tanimoto coefficient for 5-HT1A receptor ligands.
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The distribution of Tanimoto similarities supports the claim that the molecules present
in the database were well differentiated.

3.2.2. Lipinski’s Rule of Five

The classical work from 1997 by Lipinski et al. introduced four basic principles, known
as Lipinski’s rule of five, used to ensure the drug likeness of a compound. Following these
principles, it is likely to achieve good absorption and permeation through biological
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membranes. Compounds that meet these principles are characterized by a molecular
weight below 500 Da, logP value below 5, and a maximum number of five hydrogen
donors and 10 hydrogen acceptors [29].

Based on these features, we investigated how our curated database of 5-HT1A ligands
met these expectations. The graphs below show the distribution of compounds in terms of
the abovementioned features and pKi value (Figure 5). The orange color shows for which
compounds the rule of Lipinski was fulfilled, whereas the blue color shows the opposite
situation.
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In the work of Veber et al. two more rules appeared, defining a value for polar surface
area (PSA) equal to or less than 140 Å2 and a number of rotatable bonds below 10 [30]. As
for Lipinski’s rule, Figure 6 shows the compounds in our curated database that met the
above thresholds in orange, and the compounds that exceeded the designated PSA and
rotatable bond limits in blue
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In Table 1, we show the percentage of compounds in the curated database which
fulfilled each individual rule of five, and how many compounds met all rules. Almost 82%
of compounds in the curated database met Lipinski’s rules, and nearly 79% of compounds
satisfied Veber et al.’s rules.

Table 1. Summary of compounds from the curated database fulfilling the rule of five.

Feature Number of Compounds
Fulfilling the Rule

Percentage of Curated
Database Fulfilling the Rule

Molecular weight 8691 92.07%

LogP 8190 86.76%

H-bond acceptors 9356 99.11%

H-bond donors 9403 99.61%

Complete Lipinski’s rules 7735 81.94%

Polar Surface Area 9382 99.39%

Rotatable Bonds 8848 93.73%

Complete Veber et al.’s rules 7431 78.72%

The distributions of pKi values for compounds that satisfied the rule of five and for the
compounds that did not also had symmetric distributions, suggesting a normal distribution
(Figure 7).
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The correlation matrix for the six chemical descriptors (MW, nHBDon, SLogP, nHBAcc,
TopoPSA, and nRot) and pKi with Pearson’s correlation coefficients are depicted in Figure 8.
From the selected features, only the polar surface area (TopoPSA) and number of H-bond
acceptors (nHBAcc) had a strong positive correlation.
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3.2.3. Drugs Affecting 5-HT1A Receptor

Currently, many ligands of 5-HT1A serotonin receptors are used in the treatment of
diseases such as schizophrenia, depression, anxiety, and insomnia. Drugs used in hyper-
tension, arrhythmia, and Parkinson’s disease have multi-receptor profiles also showing
affinity for the 5-HT1A receptor. Examples of such drugs are presented in Table 2, along
with values of affinity for the 5-HT1A receptor and whether they met Lipinski’s rules. The
only drug that did not meet Lipinski’s rules was bromocriptine, whose molecular weight
exceeds 500 Da. Other medicines satisfied Lipinski’s principles (LogP, number of H-donors
and H-acceptors, PSA, and number of rotatable bonds). The range of pKi values for the
presented drugs was within 5.57–9.70 (median = 7.54). The listed examples of drugs can be
found in our curated database of 5-HT1A [31–44].

Table 2. Examples of approved drugs present in the curated database.

No. Drug pKi The Rule of Five

1. Amoxapine 6.66 X
2. Apomorphine 6.53 X
3. Aripiprazole 8.77 X
4. Bromocriptine 7.62 MW over limit
5. Buspirone 7.46 X
6. Cariprazine 8.59 X
7. Clozapine 6.80 X
8. Haloperidol 5.77 X
9. Lisuride 9.40 X

10. Lofexidine 6.90 X
11. Naluzotan 8.29 X
12. Olanzapine 5.57 X
13. Pergolide 8.40 X
14. Pindolol 7.65 X
15. Quetiapine 6.52 X
16. Risperidone 6.72 X
17. Sumatriptan 6.64 X
18. Vilazodone 9.70 X
19. Vortioxetine 8.02 X
20. Ziprasidone 8.70 X

3.2.4. Molecular Descriptors

The first set of obtained descriptors using the Mordred package contained 1613 vari-
ables. Missing data were replaced with mean values of the respective column representing
the molecular descriptor (a feature). Categorical true/false variables were replaced with
1/0, respectively. Empty columns and those with a maximum value equal to the minimum
value (constant columns) were removed. Finally, 1287 input variables of 2D descriptors
were obtained.

Mordred 2D descriptors provide information on compounds, such as basic information
of molecules (molecular weight, number of individual types of atoms, types of bonds,
degree of hybridization, spectral diameter, detour index, number of hydrogen donors and
acceptors, molecular distance edge between different types of atoms, polarizability of atoms
and bonds, and topological polar surface) and other features derived from a symbolic
representation (Zagreb index, adjacency matrix descriptors, Moreau–Mroto descriptors,
Moran coefficients, Geary coefficients, and descriptors describing the Burden matrix and
Barysz matrix) [45]. Figure 9 shows the distribution of values for some Mordred 2D
descriptors for the curated database of 5-HT1A receptors.
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No significant linear correlation between pKi and molecular descriptors was found.
Pearson correlation (r) ranged from −0.197 to 0.200. This indicated a need for nonlinear
modeling tools, i.e., a machine learning approach.

3.3. Model

The computational experiment allowed us to obtain a model with RMSE equal to
0.5437 and a coefficient of determination (R2) of 0.7443. The type of model was a stacked
ensemble containing 342 models: two XRTs, 49 XGBoosts, two GLMs, 150 GBMs, two DRFs,
and 137 deep learning models.

H2O AutoML selected the most important descriptors to create a predictive model.
From the initial 1287 descriptors, the feature selection stage reduced the number of features
to 216. The three most important descriptors for the model were AATSC5d, ATSC4d,
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and SpMAD. The twenty most important variables are listed in Table 3. A complete list
of features selected from the original database is provided in Supplementary Materials
Table S1.

Table 3. Top 20 variables from 216 selected during feature selection.

Chemical Descriptor Description Relative Importance Original Input No

AATSC5d
Averaged and centered

Moreau–Broto autocorrelation of lag
5 weighted by sigma electrons

1.000 364

ATSC4d
Centered Moreau–Broto

autocorrelation of lag 4 weighted by
sigma electrons

0.930 255

SpMAD_Dzi
Spectral mean absolute deviation
from Barysz matrix weighted by

ionization potential
0.912 761

SlogP_VSA1
MOE type descriptors using

Wildman–Crippen LogP and surface
area contribution

0.614 1080

nBondsS Number of single bonds in
non-Kekulized structure 0.556 773

BalabanJ Balaban’s J index 0.517 665

SsssCH Sum of sssCH 0.494 921

SssO Sum of ssO 0.415 940

SssCH2 Sum of ssCH2 0.407 917

nBase Basic group count 0.384 5

Xch-5dv 5-ordered chi chain weighted by
valence electrons 0.369 800

SaaaC Sum of aaaC 0.346 925

MATS5d Moran coefficient of lag 5 weighted
by sigma electrons 0.327 469

SLogP Wildman–Crippen LogP 0.299 1229

PEOE_VSA9
MOE type descriptors using

Gasteiger charge and surface area
contribution

0.298 1067

AATS6dv
Averaged Moreau–Broto

autocorrelation of lag 6 weighted by
valence electrons

0.291 140

SdO Sum of dO 0.281 939

SaasN Sum of aasN 0.280 936

AATS4i
Averaged Moreau–Broto

autocorrelation of lag 4 weighted by
ionization potential

0.278 228

As a point of reference, a linear model was established using the R environment [46].
According to the 10-CV method, the linear model RMSE was 0.89 and R2 was 0.32. The
model was created on the basis of the input vector consisting of 216 input variables
previously selected by the AutoML system. No other linear data analysis method could
provide a better model with a comparable number of input variables.

Graphs of the relationship between the observed and predicted pKi values for the
5-HT1A receptor using the two methods mentioned above are shown in Figure 10. Due to
the complexity of the examined problem and underlying nonlinearities, the linear model
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was characterized by worse goodness-of-fit parameters and led to predictions less precise
than the AutoML model.
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To understand how individual variables affect the pKi values, the Shapley Additive
Explanations (SHAP) method was applied [47,48]. SHAP values were estimated on the
basis of a subset of 10% randomly chosen records from the database. Figure 11 presents
results of the SHAP value calculated for the 10 variables with the highest impact on model
predictions with order according to descending absolute average SHAP value (range: 0.07
for SdO to 0.05 for AATS6dv).
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Figure 11. Aggregated feature plot ordered according to the mean absolute SHAP values. SdO—sum
of dO; SaaaC—sum of aaaC; JGI4—four-ordered mean topological charge; PEOE VSA9—MOE charge
VSA descriptor 9; IC2—two-ordered neighborhood information content; PEOE VSA10—MOE charge
VSA descriptor 10; SsssN—sum of sssN; ATSC4i—centered Moreau–Broto autocorrelation of lag 4
weighted by ionization potential; ATSC6i—centered Moreau–Broto autocorrelation of lag 6 weighted
by ionization potential; AATS6dv—averaged Moreau–Broto autocorrelation of lag 6 weighted by
valence electrons [46].

A brief analysis of Figure 11 shows that higher values of variables such as SdO, JGI4,
PEOE VSA9, ATSC4i, ATSC6i, and AATS6dv negatively influenced the pKi value predicted
by the model (SHAP value < 0), whereas variables such as SaaaC, IC2, PEOE VSA10, and
SsssN positively influenced the predicted pKi value (SHAP value > 0).
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A More detailed analysis of SHAP and variable values revealed interesting rela-
tionships. According to the presented results, the most important feature is SdO which
represents the sum of dO (=O) E-state of the molecule. The value of the SdO descriptor
depends on the presence and location of carbonyl groups in the molecule. If the molecule
contains more carbonyl groups, there are more possibilities for water to form hydrogen
bonds, and the overall hydrophilicity is increased. It is noticeable that the increased value
of the SdO descriptor resulted in decreased pKi values (Figure 12). This trend was observed
through the whole domain of this variable. However, regarding the molecules which had a
value of SdO = 0 (lack of carbonyl groups in a molecule), the positive influence on pKi was
weak (around 0.1). This may suggest that, in the case of 5-HT1A receptors, the surrounding
region of the binding site is more lipophilic than the binding site itself. In consequence,
more lipophilic molecules have easier access to the binding site. These findings are in line
with work of Bondensgaard et al., who suggested the presence of hydrophobic pockets
located near the hydrophilic binding site of the 5-HT1A receptor [49]. The hydrophobic
pocket consists of aromatic amino acids Trp 358, Phe 361, and Tyr 390, and is in proximity
to Asp 116, responsible for ligand–protein binding [50].
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In the case of JGI4, representing the topological charge of the molecule and measuring
the charge transfers between atom pairs [51], it was observed that values below 0.035 were
associated with an increased value of pKi predicted by the model. On the other hand, JGI4
values above 0.035 decreased the predicted value of pKi (Figure 13). Moreover, there was a
visible trend suggesting a functional relationship of pKi and JGI4. According to Nowaczyk
and Kulig, a decrease in the JGI4 value is observed in molecules which have unevenly
distributed electrostatic charge. In other words, JGI4 value is lower for unsubstituted
compounds than for compounds substituted with groups of high electrostatic charge (–
OH, –O–CH3, and –Cl). Therefore, in order to increase pKi value, it suggests the need for
a unique charge distribution of the chemical compound [52]. This finding additionally
supports the structure of the 5-HT1A receptor suggested by Zlatović et al., in which an
acidic amino acid (Asp 116) is located at the ligand–protein binding site [51].
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4. Discussion

The current scientific literature describing datasets of ligands for 5-HT1A receptor is
mainly focused on data from the ChEMBL database. The data from this database were
integrated into our curated database.

The research of Warszycki showed a set of 5-HT1A ligands, in a total number of
5039 compounds, divided into training (3616 molecules) and testing (1423 molecules)
datasets. Both datasets were retrieved from the ChEMBL database. The aim of this study
was to explore a new approach to pharmacophore screening involving the use of an
optimized linear combination of models. The authors used three methods of clustering
compounds available in the ChEMBL database: using a 3D pharmacophore based on a
fingerprint (P3D), MOLPRINT 2D based on a fingerprint (M2D), and the classic manual
method (grouping compounds according to a common core). The experiments proved that
an automatic method of hierarchical clustering (based on the MOLPRINT 2D fingerprint)
is a good option for screening [53]. The abovementioned compounds were also included in
the curated database of 5-HT1A receptor ligands.

The second-largest database was presented in the work of Ma and contained
1697 molecules. A novel machine learning-based ligand classification algorithm was
introduced: Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps (Li-
CABEDS). The authors conducted computational experiments using data of four types of
serotonin receptors (5-HT1A, 5-HT1B, 5-HT1D, and 5-HT4). The dataset for the 5-HT1A
receptor contained 1102 agonists and 595 antagonists. The data were taken from the GLIDA
database [54]. The authors created an efficient classifier for antagonists or agonists for
different types of serotonin receptors. The database used in this project is not available;
thus, it was not possible to compare whether the compounds contained in the GLIDA
database were also present in the curated database.

Another database containing data for 5-HT1A came from the work of Kurczab. The
aim of this study was to create a classifier identifying target selectivity for 5-HT7 and
5-HT1A receptors. The number of compounds with a specified pKi value affecting the
5-HT1A receptor was 722, retrieved from ChEMBL database. The support vector machine
method was used to create the classifier [55]. The created algorithm predicted the selectivity
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for 5-HT7 and 5-HT1A receptor ligands with high accuracy. The ligands of 5-HT1A
receptors used to create the database were included in the curated database.

The fourth set was a database of 346 ligands which were the author’s own experi-
mental data and data collected from the literature. Kuz’min divided the obtained set into
four categories in terms of pKi value. These categories became the basis of a classification
algorithm that successfully matched new compounds to one of four 5-HT1A receptor
affinity groups. The classification and regression trees (CART) algorithm was used for
modeling [56]. The obtained model was able to determine the level of affinity of the new
compound to the 5-HT1A receptor. However, due to the small number of ligands, the ob-
tained algorithm was adapted to the data; therefore, it would be ineffective for compounds
with a different chemical structure.

Weber et al. introduced a database containing information about 88 arylpiperazine
derivatives and their affinity to the 5-HT1A receptor. The authors presented research
where the prediction of affinity was based on 3D pharmacophore and calculations based on
comparative molecular field analysis (CoMFA). The training set consisted of 70 molecules,
and the model was externally validated with a test set of 18 compounds [14]. To compare
the obtained results with our work, we calculated the RMSE and R2 for the pKi value
predicted by CoMFA. In this case, RMSE was equal to 0.4 and R2 = 0.8232. The same
dataset was used by Veselinović et al. They used the simplified molecular input-line entry
system (SMILES) as a molecular representation of arylpiperazine derivatives. QSAR model
was developed using CORAL software. Four train–calibration–test splits were performed.
Test sets again contained 18 compounds; however, data records were carefully chosen to
ensure the same coverage of pKi values in all datasets. The authors used the coefficient of
determination (R2) as a good predictability measure, which, for each split, was above 0.925,
and the RMSE was in the range from 0.225 to 0.311 [13]. Jia et al. used the same test set
as Weber et al. with 18 compounds. As a molecular representation, they used norm index
descriptors (derived from, e.g., a distance matrix and Euclidean spatial distance matrix)
and accordingly developed a model for predicting 5-HT1A receptor affinity. The results for
the test set were an RMSE equal to 0.3531 and R2 above 0.866 [15].

Among the abovementioned studies, continuous output (pKi) was used only for the
database containing arylpiperazine derivatives; therefore the authors developed regression
models that predicted the pKi value [13–15]. The limited number of compounds of a similar
chemical nature allowed the authors to tune models precisely to the data, which highly
improved the model generalization.

Our curated database contains 100× more molecules of different chemical types
and properties. The research material of our study, in comparison with the datasets
presented above, is the largest available database gathering information on 5-HT1A receptor
ligands and counts 9440 unique compounds. In our structure-agnostic approach, unknown
structures of various chemical nature may be tested, yet the overall predictability of the
model is sacrificed. On the contrary, specialized models with much better predictive ability
are characterized with a narrower scope.

5. Conclusions

The ongoing development of computational resources and the increase in ML/AI
tools enable a significant improvement of the drug discovery and development process. In
order to fully exploit this opportunity, large amounts of good-quality data organized in
proper form are required. The presented study is focused on the serotonin receptor 5-HT1A,
which is a therapeutic target in many CNS diseases (depression, schizophrenia, anxiety, and
cognitive disorders), and which might be utilized in the treatment of serotonin-dependent
neoplastic diseases in the future [1,3,6].

As a result of the research, a curated database was developed through merging
and careful analysis of data available in two leading data sources: ZINC and ChEMBL.
Currently, it is the largest and the most diversified freely available database describing
molecules and their activity against the 5-HT1A receptor. Moreover, the database is
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constructed in a way that enables its direct use in predictive model development using
ML/AI tools. Such a possibility was also presented, and the model developed with AutoML
tool showed good predictive ability with RMSE = 0.5437 and R2 = 0.7443. To our best
knowledge, it is the first predictive model for pKi values for the 5-HT1A serotonin receptor
based on such a large and diverse database. The use of this model in screening processes
might significantly improve the process of searching for new drugs in the field of mental
diseases and anticancer therapy.

Future work will include both database extension and improvement of the QSAR
model in terms of predictability and interpretability. For the latter, large-scale calculations
will be commenced to find a model with predictability on the level of the model presented
in this work (if not improved) with fewer than 216 inputs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13101711/s1: Table S1. The 216 variables selected during feature selection.
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